Department of Physics ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 1st (Major) | |------------|----------------|----------|-------------| | | | | (Theory) | | Subject | Physics | Paper no | 101 | | Course | BSc (Semester) | Marks | 60 | | Unit | Course Content | Allotted to | Hours | Month | date | |-------|---|---------------------|-------|----------------------|---------------------------| | 1 | Vector analysis: Vectors,
Scalars, Vector algebra,
Product rules, Vector
fields, scalar fields. | Utpala
Baishya | 5 | August | From 2/8/18
to 20/8/18 | | 2 | Vector differentiation: Ordinary derivatives of vectors, space curves, Partial derivatives of vectors, Differentials of vectors, Concept of gradient, divergence and curl. Application of above concept to simple physical phenomena. | Utpala
Baishya | 13 | August-
September | From 21/8/18 to 30/9/18 | | b) 1. | MECHANICS Non-inertial systems and fictitious forces, rotating frame of reference, fictitious/apparent force in a rotating co-ordinate system, Coriolis force, Coriolis and centrifugal forces produced as a result of earth's rotation. Deflection of a freely | Chandrama
Kalita | 8 | August | From 2/8/18
to 25/8/18 | | 2. | falling body, effect of Coriolis force on the horizontal straight line motion of a body on the surface of the earth. Work-energy theorem, integral of the equation of motion, conservative forces, potential energy, conservative force as the negative gradient of potential energy, curl of a conservative force, non- conservative forces, general law of conservation of energy. | Chandrama
Kalita | 5 | August-
September | From 26/8/18-6/9/18 | |----|--|---------------------|---|----------------------|--------------------------| | 3. | Mechanics of a system of particles, centre of mass, motion of the centre of mass, conservation of momentum, calculation of centre of mass of (i) non-uniform rod, (ii) semicircular arc (iii) semicircular disk and (iv) solid hemisphere. Laboratory frame of reference and centre of mass frame of reference, two dimensional elastic collision in laboratory frame of reference and centre of mass frame. | Chandrama
Kalita | 8 | September | From 7/9/18 to 30/9/ 18 | | 4. | Angular momentum, angular momentum of a system of particles in terms of the centre of mass coordinate, conservation law of angular momentum, angular momentum and fixed axis rotation of a rigid body, moment of inertia, calculation of moment of inertia for spherical bodies (shell, | Chandrama
Kalita | 8 | October | From 1/10/18 to 31/10/18 | | | hollow and solid). The compound pendulum, determination of g by Kater's pendulum. | | | | | |----|---|---------------------|---|----------|--------------------------| | 5. | Gravitation, gravitational field and potential due to spherical shell and solid sphere. | Chandrama
Kalita | 5 | November | From 1/11/18 To 15/11/18 | # **Department of Physics, SBMS College** | Department | Physics | Semester | 1 st (Major) (Theory) | |------------|---------------|----------|----------------------------------| | Subject | Physics | Marks | 60 | | Course | BSc(Semester) | Paper no | 102 | | Unit | Course Content | Allotted | Hours | Month | date | |------|--|----------|-------|-----------|------------| | | | to | | | | | a) | Waves and Oscillation: | | | | | | 1. | Harmonic Motion: Simple | Jayanta | 12 | August | 2/8/18 to | | | Harmonic motion, Composition of | Deka | | | 25/8/18 | | | two simple harmonic oscillations at | | | | | | | right angles, Lissajous figures. Free, | | | | | | | damped and forced oscillations, | | | | | | | resonance, and sharpness of | | | | | | | resonance. | | | | | | 2. | Wave Motion: Wave motion in an | Jayanta | 12 | August- | 26/8/18 to | | | elastic medium, characteristic of | Deka | | September | 30/8/18 | | | progressive waves, mathematical | | | | | | | representation of a progressive | | | | | | | wave. Differential wave equation in | | | | | | | one dimension, solution of wave | | | | | | | equation (method of separation of | | | | | | | variables). Energy density of plane | | | | | | | progressive waves, Superposition of | | | | | | | waves. Stationary waves, | | | | | | | characteristics of stationary waves. | | | | | | 3. | Sound Waves: Velocity of | Jayanta | 8 | October | 1/10/18 to | |----|--|----------|----------|-----------------------|-------------| | | longitudinal waves in a solid bar. | Deka | | | 20/10/18 | | | Intensity of sound wave. Units of | | | | | | | intensity. Acoustics of auditorium, | | | | | | | reverberation, Sabine's law. 6 | | | | | | | Lectures | | | | | | 4. | Fourier analysis: Fourier analysis | Jayanta | 16 | October to | 21/10/18 to | | | and evaluation of Fourier | Deka | | November | 15/11/18 | | | coefficients. Application of Fourier | | | | | | | analysis to square and saw tooth | | | | | | | waves. Equation of transverse | | | | | | | vibration of a stretched string, | | | | | | | energy of vibrating string, plucked | | | | | | 1. | string and struck string. | | | | | | b) | RAY OPTICS: | TT. 1 | | 0 1 | 1/10/10 | | 1. | Fermat's principle: Fermat's | Utpala | 3 | October | 1/10/18 to | | | principle and its application in | Baishya | | | 10/10/18 | | | establishing laws of reflection and | | | | | | | refraction at spherical and plane | | | | | | _ | boundaries. | TT: 1 | 2 | 0.41 | 11/10/10 / | | 2. | Matrix method: Translation matrix | Utpala | 3 | October | 11/10/18 to | | | and Refraction Matrix, use of | Baishya | | | 20/10/18 | | | matrix method in refraction at a | | | | | | | spherical surface and refraction | | | | | | 2 | through thin lens. | T T4 1 - | 5 | 0-4-1 | 21/10/18 to | | 3. | Lens system: Sign convention, | Utpala | 3 | October -
November | 5/11/18 | | | conjugate foci, relation for refraction of paraxial rays at single spherical | Baishya | | November | 3/11/10 | | | surface, interrelation among lateral, | | | | | | | longitudinal and angular | | | | | | | magnification, Lagrange's law and | | | | | | | Helmholtz equation and its | | | | | | | modification for telescopic system. | | | | | | 4. | Defects of image: Spherical | Utpala | 7 | November | 6/11/18 to | | 7. | aberration and its magnitude for thin | Baishya | , | rovember | 15/11/18 | | | lens for object at finite distance and | Buisnyu | | | 15/11/10 | | | condition for minimum aberration | | | | | | | when object is at infinity, | | | | | | | Minimization of spherical aberration | | | | | | | by using suitable lens of different | | | | | | | radii of curvature and by aplanatic | | | | | | | surface, Qualitative idea about | | | | | | | coma, astigmatism and distortion, | | | | | | | Chromatic aberration, circle of least | | | | | | | confusion, achromatism of two thin | | | | | | | lenses separated by a distance. | | | | | | L | remote departited by a distance. | | <u> </u> | | | # **Department of Physics, SBMS College** | Department | Physics | Semester | 1 st (Practical) | |------------|----------------|----------|-----------------------------| | | | | (Major) | | Subject | Physics | Marks | 50 | | Course | BSc (Semester) | Paper no | 103 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|--------|-----------------------| | a) | TEST OF LABORATORY SKILL: | | | | | | 1. | Identification of active and passive components of an electronic circuit. | Chandrama
Kalita | 1 | August | 2/8/18 to
10/8/18 | | 2. | To use a multimeter for identification of different terminals of (i) diode and (ii) transistor. | Chandrama
Kalita | 1 | August | 2/8/18 to
10/8/18 | | 3. | To find the value of resistor from colour code and verify by measuring the resistance by multimeter. | Chandrama
Kalita | 1 | August | 12/8/18 to 20/8/18 | | 4. | To make connections using soldering. | Chandrama
Kalita | 1 | August | 12/8/18 to 20/8/18 | | 5. | To measure small distances and
angles using different varnier
scales attached to (i) traveling
microscope, (ii) polarimeter and
(iii) spectrometer | Chandrama
Kalita | 1 | August | 21/8/18 to
30/8/18 | | 6. | To check the condition of a lead-
acid battery (i) acid strength by
common hydrometer, (ii) acid
level and (iii) emf(using
multimeter). | Chandrama
Kalita | 1 | August | 21/8/18 to
30/8/18 | | 7. | To check the condition of capacitor using multimeter. | Chandrama
Kalita | 1 | August | 21/8/18 to 30/8/18 | | b) | PRACTICAL: | ixanta | | | 30/0/10 | | 1. | To measure the extension of an experimental wire due to different pulling forces using Searle's apparatus and hence determine the Young's modulus of the material of the wire. | Utpala
Baishya | 4 | August | 2/8/18 to 30/8/18 | |----|--
---------------------|---|-----------|------------------------| | 2. | Study the variation of angle of twist of a given rod at different lengths from the fixed end, with torque & then determine the rigidity modulus of the material of the rod. | Chandrama
Kalita | 4 | September | 1/9/18 to 30/9/18 | | 3. | To study the variation of time period of a bar pendulum about different point of suspension and use the result to find the value of g at a place. | Jayanta Deka | 4 | October | 1/10/18 to 30/10/18 | | 4. | To determine the moment of inertia of a cylinder or a rectangular parallelopiped about two different axes of symmetry by torsional oscillation method. | Chandrama
Kalita | 4 | November | 1/11/18 to
15/11/18 | ### DEPARTMENT OF PHYSICS ### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 1 st (General) | |------------|----------------|----------|---------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 101 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|-------------------------------------|-------------|-------|-------|------| | a) | Mechanics and properties of Matter: | | | | | | 1. | Conservative and non-conservative forces, force as gradient of potential. | Chandrama
Kalita | 2 | August | From 2/8/18
to 31/8/18 | |----|--|---------------------|---|-----------|---------------------------| | 2. | Rotational motion, torque, angular momentum, conservation of angular momentum, work and power in rotational motion, KE of rotation, moment of inertia, theorems of moment of inertia, moment of inertia of rectangular plate, circular disc, cylinder, sphere (solid and hollow), body rolling without slip. | Chandrama
Kalita | 6 | August | From 2/8/18 to 31/8/18 | | 3. | Gravitation: determination of G by Cavendish method, gravitational field and potentials due to solid sphere and spherical shell, Kepler's law of planetary motion, Newton's law of gravitation from Kepler's law, artificial satellites, geostationary satellite, eccentricity of orbit of a satellite, escape velocity. | Chandrama
Kalita | 5 | October | From 2/10/18 to 31/10/18 | | 4. | Compound pendulum: equivalent simple pendulum, centers of suspension and oscillation, four points of equal time period, condition for minimum time period. | Chandrama
Kalita | 4 | November | From 1/11/18 to 15/11/18 | | 5. | Elasticity: Hook's law, different kinds of elastic constants, work done in deforming a body, Relation among the elastic constants. Bending of beam fixed at one end and loaded at the other end, torsion of a rod. | Utpala
Baishya | 7 | August | From 2/8/18 to 31/8/18 | | 6. | Streamline and turbulent flow, critical velocity, viscosity of fluids, Poiseuille's equation. Bernoulli's equation, its derivation and applications. | Utpala
Baishya | 5 | September | From 2/9/18 to 15/9/18 | | b) | Wave and Sound: | | | | | | 1. | Simple harmonic motion,
differential equation of S.H.M., total
energy of a particle executing
S.H.M., oscillation of loaded spring.
Free, damped and forced vibrations, | Jayanta
Deka | 6 | September | From 16/9/18 to 31/9/18 | | | resonance, sharpness of resonance, equation of wave motion, principle of superposition of waves, beats, stationary wave and Doppler's effect. | | | | | |----|---|-----------------|---|----------|--------------------------| | 2. | Velocity of sound in a homogeneous medium, effect of temperature and pressure on velocity of sound in air, intensity level of sound and its unit (bel and decibel). | Jayanta
Deka | 4 | October | From 1/10/18 to 12/10/18 | | 3. | Ultrasonic waves production of ultrasonic waves, application of ultrasonic waves, principle of SONAR system. | Jayanta
Deka | 4 | November | From 1/11/18 to 12/11/18 | ## **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (Major)(Theory) | |------------|----------------|----------|---------------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 301 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-------------------|-------|----------------------|-----------------| | a) | MATHEMATICAL
METHODS-III: | | | | | | 1. | Properties of matrices, Transpose matrix, complex conjugate matrix, Hermitian matrix, special square matrix, unit matrix, diagonal matrix, Co-factor matrix, adjoint of a matrix, self-adjoint matrix, symmetric matrix, anti-symmetric matrix, túnitary matrix, orthogonal | Utpala
Baishya | 15 | August-
September | 2/08/18-30/9/18 | | | matrix, trace of a matrix, inverse matrix. | | | | | |----|--|---------------------|----|-----------|----------------------| | 2. | Eigenvalue problems, Cayley-
Hamilton Theorem,
Diagonalization of matrices. | Utpala
Baishya | 6 | October | 1/10/18to10/10/18 | | 3. | Co-ordinate transformations, rotation in two dimensions, rotation in three dimensions. | Utpala
Baishya | 8 | October | 11/10/18 to 20/11/18 | | b) | ELECTROSTATICS: | | | | | | 1. | Electric field, Electric field due to a uniformly charged (a) wire, (b) ring, and (c) disc. Divergence of Electric field, Gauss's law in integral and Applications of Gauss's law. Curl of an electric field, Electric potential, electric potential due to a uniformly charged (a) wire, (b) ring, and (c) disc. Electric dipole, Potential and field due to a dipole, dipole in a uniform external electric field, dipole- dipole interaction. Multipole expansion of electrostatic potential due to a volume distribution of charge. | Chandrama
Kalita | 14 | August | 2/08/18-31/8/18 | | 2. | Electrostatic boundary conditions. Electrostatic energy. Energy of (a) an assembly of P.39 Bijle point charges, (b) uniformly charged sphere. Laplace's and Poisson's equations, P-47 boundary conditions and Uniqueness theorem, Solutions of Laplace's equation in one dimension Electric, potential and intensity (a) inside an infinite parallel plate capacitor, (b) inside spherical capacitor, and (c) due to a long and uniformly charged conducting wire. | Chandrama
Kalita | 10 | September | 1/09/18-30/8/18 | | 3. | Method of trical image with examples of (a) infinite grounded conducting, plane electrical and (b) grounded conducting sphere. | Chandrama
Kalita | 4 | October | 1/10/18 -10/10/18 | | 4. | Dielectrics: induced dipoles, | Chandrama | 7 | October - | 11/10/18- | |----|--------------------------------------|-----------|---|-----------|-----------| | | atomic polarizability, polar and | Kalita | | November | 15/11/18 | | | nonpolar molecules, polarization. | | | | | | | The electric field of a polarized | | | | | | | object, bound charges, The electric | | | | | | | field inside a dielectric, Gauss's | | | | | | | law in the presence of dielectrics, | | | | | | | Electric displacessent, linear | | | | | | | dielectrics, susceptibility, | | | | | | | permitivity and dielectric constant, | | | | | | | Clausius equation. Massotti | | | | | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (Major) (Theory) | |------------|----------------|----------|----------------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 302 | | Unit | Course Content | Allotted | Hours | Month | date | |------|-------------------------------------|----------|-------|-----------|---------| | | | to | | | | | a) | CURRENT ELECTRICTY: | | | | | | 1. | Electric current density, | Jayanta | 10 | August | 2/8/18- | | | continuity equation, Ohm's law, | Deka | | | 31/9/18 | | | Applications of Kirchoff's law to | | | | | | | solve electrical network problem, | | | | | | | Kelvin double bridge for low | | | | | | | resistance measurement, moving | | | | | | | coil ballistic galvanometer and its | | | | | | | nd its sensitivity | | | | | | 2. | Electromagnetic induction: Self | Jayanta | 10 | September | 1/9/18- | | | and mutual induction, coefficient | Deka | | | 25/9/18 | | | of coupling, reciprocity theorem, | | | | | | | self induction of a long solenoid, | | | | | | | mutual induction of two solenoids, | | | | | | | measurement of L. and M using | | | | | | | dic source and ballistic | | | | | |----|-------------------------------------|----------|----|--------------|------------| | | galvanometer. | | | | | | | garvanometer. | | | | | | 3. | Transient growth and decay of | Jayanta | 8 | September to | 26/9/18 - | | | current in LR, CR and LCR | Deka | | October | 10/10/18 | | | circuits, oscillatory discharge. | | | | | | | Thermo electricity: Coefficients of | | | | | | | thermo-emf, thermoelectric power | | | | | | 4. | Alternating current:
Generation of | Jayanta | 10 | October | 11/10/18 — | | | alternating current, Phasor | Deka | | | 31/10/18 | | | (complex number method) method | | | | | | | of analyzing a.c. circuits, current | | | | | | | and potential across resistive, | | | | | | | inductive and capacitive elements | | | | | | | and their phase relationships, | | | | | | | power factor, LR, CR and LCR | | | | | | | (series and parallel) circuits, | | | | | | | quality factor, resonance, | | | | | | | Maxwell's LC bridge and | | | | | | | Anderson's bridge. | | | | | | 5. | Rotating magnetic field, a.c. | Jayanta | 7 | November | 1/11/18 - | | | motor, transformer, reflected | Deka | | | 15/11/18 | | | impedance in transformer. use of | | | | | | | transformer. | | | | | | b) | MAGNETOSTATICS: | | | | | | 1. | Magnetic field, Lorentz force, | Utpala | 7 | October to | 21/10/18- | | | Cyclotron motion, cycloid motion, | Baisshya | | November | 5/11/18 | | | Biot-Savart law. Magnetic field | | | | | | | due to a steady current in (a) | | | | | | | straight conductor and (b) | | | | | | | a circular coil. Divergence and | | | | | | | Curl of a magnetic field. | | | | | | 2. | Ampere's circuital few: magnetic | Utpala | 8 | November | 6/11/18 — | | | field due to a (a) long straight | Baisshya | | | 15/11/18 | | | conductor and (b) an infinite | | | | | | | solenoid carrying a steady current, | | | | | | | Magnetic scalar and vector | | | | | | | potential. Force and torque on a | | | | | | | current loop in a uniform magnetic | | | | | | | field, Current loop as a magnetic | | | | | | | dipole | | | | | | | | | · | 1 | | # **Department Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (Practical) | |------------|---------------|----------|-----------------------------| | | | | (Major) | | Subject | Physics | Marks | 50 | | Course | BSc(Semester) | Paper no | 303 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|------------------------| | 1 | To determine the horizontal component of earth's magnetic field using deflection and vibration magnetometer, | Utpala
Baishya | 6 | August | 2/8/18 to
15/8/18 | | 2 | To compare the values of two given low resistances using a potentiometer. | Jayanta Deka | 6 | August | 16/8/18 to
31/8/18 | | 3 | To determine the internal resistance of a given cell using a potentiometer. | Jayanta Deka | 6 | September | 1/9/18 to
15/9/18 | | 4 | To determine the end correction of a meter bride and than to determine the specific resistance of the material of a given wire with help of the meter hridge using end correction. | Chandrama
Kalita | 6 | September | 16/9/18 to
30/8/18 | | 5 | To convert a given galvanometer into an ammeter of given range and than calibrate it with the help of a copper voltameter. | Chandrama
Kalita | 6 | Octobert | 1/10/18 to
15/10/18 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd | |------------|---------------|----------|-------------------| | _ | | | (General)(Theory) | | Subject | Physics | Marks | 40 | | Course | BSc(Semester) | Paper no | 301 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|---------------------| | a) | Heat: | | | | | | 1. | Platinum resistance thermometer and thermocouple thermometer. | Utpala
Baishya | 4 | August | 2/8/18-
15/8/18 | | 2. | Kinetic theory of gases, expression of Maxwell's law of velocity distribution (deduction not necessary), degree of freedom, law of equipartition of energy, mean free path, Brownian motion. | Utpala
Baishya | 5 | August | 16/8/18-
31/8/18 | | 3 | Andrew's and Amagat's experiment, equation of state, Van-der-Waals' equation of state, reduced equation of state, critical constants. | Utpala
Baishya | 5 | September | 1/9/18-
15/9/18 | | 4. | Joule-Thomson effect, liquefaction of gases by Joule-Thomson effect. | Chandrama
Kalita | 4 | August | 2/8/18-
15/8/18 | | 5. | Phase, first order phase transitions,
Clausius-Clayperon equation, Gibbs'
phase rule, triple point. | Chandrama
Kalita | 4 | August | 16/8/18-
31/8/18 | | 6. | Radiation: Kirchhoff's law and its applications, relation between radiation pressure and energy density, Black body radiation, expressions of Stefan-Boltzmann law, Wien's displacement | Chandrama
Kalita | 7 | September | 1/9/18-
30/9/18 | | | law, Rayleigh-Jean's law and
Planck's law of black body radiation. | | | | | |----|--|-----------------|---|-----------|----------------------| | b) | Thermodynamics: | | | | | | 1. | Zeroth law of themodynamics and concept of temperature. | Jayanta
Deka | 2 | September | 1/9/18-
8/9/18 | | 2. | Heat and work and their equivalence, First law of thermodynamics and concept of internal energy, Applications of first law of thermodynamics. | Jayanta
Deka | 4 | September | 9/9/18-
20/9/18 | | 3. | Inadequacy of first law of thermodynamics, Second law of thermodynamics, reversible and irreversible processes, isothermal and adiabatic processes, work done by perfect gas under isothermal and adiabatic expansion, Carnot engine and Carnot cycle, Thermodynamic scale of temperature. | Jayanta
Deka | 5 | September | 21/9/18-
30/9/18 | | 4. | Entropy, change of entropy in reversible and irreversible processes, Clousious inequality relation. | Jayanta
Deka | 3 | October | 1/10/18-
7/9/18 | | 5. | Maxwell's thermodynamic relations and their applications. | Jayanta
Deka | 2 | October | 8/10/18-
12/10/18 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 50 | | Course | BSc (Semester) | Paper no | 302 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|----------------------| | 1 | To study the elongation of a wire by different pulling forces using Searle's apparatus and find the value of Young's modulus. | Utpala
Baishya | 5 | August | 2/8/18-
12/8/18 | | 2 | To determine the value of g by bar pendulum. | Utpala
Baishya | 5 | August | 16/8/18-
25/8/18 | | 3 | To determine the specific resistance of the material of the given wire by Meter Bridge and then find the length of wire necessary to construct a one ohm coil. | Jayanta Deka | 5 | September | 1/9/18-
15/9/18 | | 4 | To determine the emf of a cell using a cell of known emf with the help of potentiometer. | Jayanta Deka | 5 | September | 16/9/18-
30/9/18 | | 5 | To determine the resistance per unit of the length of meter bridge wire by Carey-Foster method. | Chandrama
Kalita | 5 | October | 1/10/18-
15/10/18 | | 6 | 7. To convert a given galvanometer into a voltmeter of given range and then calibrate it with standard resistance and ammeter. | Chandrama
Kalita | 5 | November | 1/11/18-
15/11/18 | # **Department Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major)(Theory) | |------------|----------------|----------|---------------------------------| | Subject | Physics | Marks | 60 | | Course | BSC (Semester) | Paper no | 501 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------------------|-----------------------| | a) | MATHEMATICAL
METHODS-V: | | | | | | 1 | Algebraic operation, Argand diagram, vector representation, complex coniuures Euler's formula, De-Moiver's theorem. | Utpala
Baishya | 5 | August | 2/8/18to12/8/18 | | 2 | Analytic function of a complex variable, Derivative of F(z) and its analyticity, contour integrals, equivalent contours, Cauchy integral theorem, differentiation under integral sign. | Utpala
Baishya | 13 | August | 13/8/18 to
24/8/18 | | 3 | Series expansion: Taylor and Laurent series and their simple applications Residues, Zeros, isolated singular points, evaluation of residues. Evaluation of definite intragrals. | Utpala
Baishya | 12 | August-
September | 25/8/18 to 30/9
18 | | b) | CLASSICAL MECHANICS: | | | | | | 1 | Central force motion, two body central force motion, two body motion as a one body problem, general properties of central force motion, Energy and momentum | Chandrama
Kalita | 8 | August | 2/8/18
to12/8/18 | | | as constants of motion in central force, Energy equation involving only the radial motion, energy diagram and nature of orbits. | | | | | |---
---|---------------------|----|-----------|-----------------------| | 2 | Application of central force problem to motion under inverse square force field. solution of the equation of the path to find the nature of the orbits as hyperbolic, parabolic and elliptic. | Chandrama
Kalita | 8 | August | 13/8/18 to
24/8/18 | | 3 | Constraints, generalized coordinates, principle of virtual work. D' Alembert's principle and Lagrange's equations of motion, simple applications of Lagrangian formulations (i) Atwood machine (ii) simple pendulum (iii) Keplerian motion (iv) bead sliding on rotating wire. (v)compound pendulum, (vi)linear harmonic oscillator Hamilton's principle, calculus of variation, shortest distance between two points as example, Lagrange's equations from Hamilton's principle, Hamiltonian of a system, Hamilton's canonical equations of motion, applications of Hamilton's equations to simple problems like simple pendulum, Kepler's problem., Poisson brackets. | Chandrama
Kalita | 14 | September | 25/8/18 to 30/9
18 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major | |------------|----------------|----------|------------------------| | | | | Theory) | | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 502 | | Unit | Course Content | Allotted | Hours | Month | date | |------|--|----------|-------|-----------|------------| | | | to | | | | | 1 | Positive rays and their analysis: | Utpala | 10 | August | 2/8/18 to | | | Thomson's mass parabola method, | Baishya | | | 15/8/18 | | | Aston's mass spectrograph, | | | | | | | Bainbridge mass spectrograph. | | | | | | 2 | Rutherford's nuclear atom model, | Utpala | 8 | August | 16/8/18 to | | | alpha scattering expt, deduction of | Baishya | | | 31/8/18 | | | the scattering formula. | | | | | | 3 | Atomic spectra: Bohr's theory of | Utpala | 12 | September | 1/9/18 to | | | hydrogen spectra, energy level | Baishya | | | 31/9/18 | | | diagram, Ritz combination principle, | - | | | | | | resonance, excitation, critical and | | | | | | | ionization potentials; fine structures | | | | | | | of the spectral lines, Sommerfeld's | | | | | | | extension of the Bohr's theory. | | | | | | 4 | Vector stom model: Spectra of | Utpala | 15 | October | 1/10/18 to | | | alkali stoms, Bohr magneton; | Baishya | | | 31/10/18 | | | spinning electron; quantum | - | | | | | | numbers; Pauli's exclusion principle; | | | | | | | explanation of the periodic | | | | | | | classification of the clements; | | | | | | | spectroscopic notations, source of | | | | | | | radiation in external fields- normal | | | | | | | Zeeman effect; anomalous Zeeman | | | | | | | effect, Paschen-Back effect, Stark | | | | | | | effect, Stern-Garlach experiment. | | | | | | 5 | X-Rays: Continuous and | Utpala | 8 | November | 1/11/18 to | |---|--|-------------------|---|----------|------------------------| | | Characteristics X-rays, Mosley's | Baishya | | | 15/11/18 | | | law, Compton effect | | | | | | 6 | Scattering of light: Rayleigh scattering formula; colour of the sky: polarisation of the scattered light; Raman effect, experimental study of Raman effect, quantum Raman effect, application of the effect. | Utpala
Baishya | 7 | November | 1/11/18 to
15/11/18 | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 503 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-----------------|-------|--------|-----------------------| | a) | QUANTUM MECHANICS: | | | | | | 1. | Development of quantum mechanics in light of Black body radiation, failure of classical idea, Plank's quantum hypothesis, photoelectric effect and Compton effect. | Jayanta
Deka | 5 | August | 2/8/18 to
14/8/18 | | 2. | Matter wave: Wave particle duality, de Broglie wave associated with moving particles- (i) non relativistic and (ii) relativistic case, verification of matter waves by (i) Davisson | Jayanta
Deka | 8 | August | 15/8/18 to
31/8/18 | | 3. Co Bol Prin mic app Prin 4. Wa pro pro equ pro Non nor | periment. omplimentary principle of Neils ohr, Heisenberg's Uncertainty inciple, Gamma ray croscope experiment, plication of Uncertainty inciple. Vave function and its obabilistic interpretation as obability amplitude; Continuity uation, probability density and obability current density J; ormalisation condition and rmalised wave function; | Jayanta
Deka
Jayanta
Deka | 8 | September September | 1/9/18 to
15/9/18
16/9/18 to
30/9/18 | |--|--|------------------------------------|----|---------------------|---| | pro
pro
equ
pro
Non
nor
pro | obabilistic interpretation as obability amplitude; Continuity uation, probability density and obability current density J; ormalisation condition and | • | 8 | September | | | Wa
wav | operties of well behaved wave nction in quantum mechanics. ave packets, Superposition of aves, phase velocity and group locity and their relation. | | | | 30/7/10 | | 5. Int form operand and value Schritim inder Print Schrone one Ref coe (iii) dim infindim oscutto atom radio radio or coe atom co | troduction to operator rmalism, Dynamical variable as erator (position, momentum d Hamiltonian), Eigenvalues d eigenfunction; Expectation lue, Ehrenfest's theorem. hrodinger wave equation (i) ne dependent and (ii) time dependent Correspondence inciple. Application of hrodinger's wave equation (i) e dimensional step potential (ii) e dimensional potential barrier, effection and transmission efficients and tunneling effect, ii) a particle in a one mensional potential well of finite depth (iv) one mensional harmonic cillator.(v) Theory of hydrogen om-separation of variables, dial solution. | Jayanta
Deka | 12 | October | 1/10/18 to 20/10/18 | | - | STROPHYSICS: | | | | | | 1. | Astrophysical Co-ordinates: Celestial coordinate systems, The right Ascension. Declination and Altitude-Azimuth coordinate systems. The ecliptic and annual motion of the Sun across the thy the Signs of Zotine Identifications
of the Constelationsecure and bright star. | Hirak
Choudhury | 5 | August | 2/8/18 to
14/8/18 | |----|--|--------------------|---|-----------|-----------------------| | 2. | Concept of time: Sidereal time and solar time; Greenwich Mean Time(GMT), standard time and local time; Julian date and its importance in astronomical observation. | Hirak
Choudhury | 5 | August | 15/8/18 to
31/8/18 | | 3 | Stellar Magnitude system and Distance measurement: The Stellar magnitude system and its relation with luminosity. Apparent and absolute magnitude and their relations with distances. Trigonometric and spectroscopic parallax to determine the distances. Difference magnitude systems. | Hirak
Choudhury | 5 | September | 1/9/18 to
15/9/18 | | 4. | Spectral Classification and H.R. Diagram: Spectral classification, color index, H-D classification. The H-R Diagram. Steller evolution and the evolutionary track of a star. | Hirak
Choudhury | 5 | September | 16/9/18 to
30/9/18 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major, Theory) | |------------|----------------|----------|---------------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 504 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|-----------------------| | 1 | Volt-ampere relation of P-N junction diode (deduction not necessary), Energy band diagram of P-N diode, photo diode, LED, varactor diode and zener diode. Rectifiers- half wave and full wave with resistive load, efficiency, ripple factor, filters- series inductor, shunt capacitor, L-section and I-section. Voltage regulation and regulated Power Supply. Clipping and clamping circuits. | Chandrama
Kalita | 8 | August | 2/8/18 to
16/8/18 | | 2 | Thevenin, Norton and Millman theorem & maximum power transfer theorem. | Chandrama
Kalita | 6 | August | 17/82/18to
31/8/18 | | 3 | Transistor, different mode of operations and characteristics of transistor, basic transistor amplifier, load line and operating point (Q point) of transistor, Stabilization of Q point, transistor biasing circuits, two port (four terminals) device and z, y and h | Chandrama
Kalita | 14 | September | 1/9/18to
15/9/18 | | | | | | 1 | | |---|--|---------------------|----|-----------------|----------------------| | | parameters, h parameter equivalent circuit, analysis of transistor amplifier (CE) with h parameters, current gain, voltage gain and power gain, input and output impedance, Classification of amplifiers, Class A, Class B and Class C amplifiers, cascade amplifiers, small signal RC coupled amplifier (CE) and its voltage and current gain in low, mid and high frequency, frequency response curve, Phase relation between input and output, Power amplifiers, power dissipation, Harmonic distortion, large signal Push Pull Amplifier (Class B) | | | | | | 4 | Concept of feedback, different | Chandrama
Kalita | 7 | September | 16/9/18 to 24/9 18 | | | types of feedback, advantages of negative feedback in amplifier, | Kanta | | | 2 4 /9 18 | | | Barkhousen criterion, | | | | | | | classification of oscillators, tuned | | | | | | | collector oscillator,Phase shift(R- | | | | | | | C) and Wein bridge oscillator, | | | | | | 5 | Multivibrators. | Chandran - | 6 | Cantambas | 25/0/1946 | | 5 | Direct Coupled Amplifier, differential amplifier, introduction | Chandrama
Kalita | 6 | September | 25/9/18 to 30/9/18 | | | to IC. OPAM, | ixuiiu | | | 30/ 2/ 10 | | | characteristics of an ideal OPAM, | | | | | | | common and differential mode, | | | | | | | CMMR, inverting, non-inverting | | | | | | | mode of OPAM, OPAM as scale | | | | | | | changer, adder, subtractor, | | | | | | 6 | differentiator and integrator. Modulation, need of modulation, | Chandrama | 12 | October20/10/24 | 1/10/18 to | | | Theories of AM and FM, side- | Kalita | 12 | 00000120/10/24 | 20/10/18 | | | bands, power content in different | • • • | | | | | | parts of the modulated wave, band | | | | | | | width of AM and FM, modulators, | | | | | | | amplitude, modulation circuits, | | | | | | | circuit of square band-widulation | | | | | | | and detection, SSB transmission, AM Transmitter (block diagrams), | | | | | | | super heterodyne receiver (block | | | | | | | diagraenic Introduction to radio | | | | | | | wave propagation, ground or | | | | | | | surface wave, space or
tropospheric wave and sky wave.
Working and uses of CRO,
Introductory idea of
microprocesser. | | | | | |---|--|---------------------|---|--------|-------------------------| | 7 | Binary Number System, Decimal to binary conversion, Binary to decimal conversion, Binary addition and subtraction. OR, AND, NOT, NOR and NAND Logic gates using P- N junction diode and transistors, Boolean Algebra, De Morgan's Theorem, Sequential circuits, Latch, RS, JK, MSJK, D and T flip flops. Introduction to binary transmission ASK, FSK and PSK. | Chandrama
Kalita | 7 | Ocober | 21/10/18 to
30/10/18 | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 75 | | Course | BSC (Semester) | Paper no | 505 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|--------|----------------------| | 1 | To draw the characteristic curve of a photo cell and find the maximum velocity of the emitted electrons. | Chandrama
Kalita | 6 | August | 2/8/18
to15/8/18 | | 2 | To determine the value of Planck's constant with the help of | Jayanta Deka | 6 | August | 16/8/18
to31/8/18 | | | photo cell a monochromatic filter | | | | | |---|---|---------------------|---|-----------|-------------------------| | 3 | To determine the value of
Stefan's constant by electrical
method using an incandescent
electric bulb. | Utpala
Baishya | 4 | September | 1/9/18
to15/9/18 | | 4 | To calibrate a spectrometer with spectral lines of known wavelength and hence determine unknown wavelength of spectral lines emitted by a given source | Chandrama
Kalita | 6 | September | 16/9/18
to30/9/18 | | 5 | To study the variation of refractive index of the material of a prism with known wavelengths of spectral lines of a source and hence determine the unknown wavelength of a spectral line emitted by a source. | Chandrama
Kalita | 6 | October | 1/10/18 to
15/10/18 | | 6 | To determine he boiling point of
the given liquid with the help of a
Platinum Resistance
thermometer. | Utpala
Baishya | 8 | October | 16/10/18 to
31/10/18 | ### **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 506 | | Unit | Course Content | Allotted | Hours | Month | date | |------|---|-----------------|-------|-----------|-------------------| | | | to | | | | | 1 | To verify De Morgan's theorem using IC 7400 and 7402. (Using Breadboard). | Jayanta
Deka | 8 | September | 5/9/18 to 25/9/18 | | 2 | To assemble (a) OR, (b) AND, (c) | Jayanta | 8 | October | 3/10/18 to | | | NOT and (d) NAND gate with | Deka | | | 31/10/18 | |---|-------------------------------------|---------|---|----------|------------| | | resistance, diode and transistors | | | | | | | using bread board and verify their | | | | | | | truth table. (Using Breadboard). | | | | | | 3 | To draw the forward bias | Jayanta | 8 | November | 1/11/18 to | | | characteristic of a semiconductor | Deka | | | 15/11/18 | | | diode and the reverse bias | | | | | | | characteristic of a Zener diode and | | | | | | | hence determine their DC and AC | | | | | | | resistances. Also determine the | | | | | | | breakdown voltage of the Zener | | | | | | | diode
(Using Breadboard). | | | | | ## **Department Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th | |------------|----------------|----------|-------------------| | | | | (General)(Theory) | | Subject | Physics | Marks | 80 | | Course | BSc (Semester) | Paper no | 501 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-------------------|-------|--------|--------------------| | a) | Mathematical methods: | | | | | | 1. | Vector Algebra, scalar and vector product with illustration from physics, vector triple products. | Utpala
Baishya | 5 | August | 2/8/18-
12/8/18 | | 2. | Vector calculus: Scalar and Vector fields with example from physics, space curve, differentiation of a vector with respect to a scalar, gradient of scalar, divergence and curl of vector with example from physics. | Utpala
Baishya | 10 | August | 13/8/18-
31/8/18 | |----|--|---------------------|----|-----------|----------------------| | 3. | Line integral, surface integral
and volume integral. Gauss's
theorem, Stoke's and Green's
theorem. | Utpala
Baishya | 5 | September | 1/9/18-
10/9/18 | | 4. | Curvilinear coordinate system, coordinate line and coordinate surface, unit normal vectors and unit tangent vectors, scale factor, orthogonal curvilinear coordinates, cylindrical polar and spherical polar coordinate systems. | Utpala
Baishya | 10 | October | 11/9/18-
30/10/1 | | b) | Atomic Physics: | | | | | | 1. | Positive rays: analysis of positive rays, Aston and Bainbridge mass spectrographs. | Chandrama
Kalita | 5 | August | 2/8/18-
12/8/18 | | 2. | Bohr's theory of hydrogen spectra, energy level diagram, Ritz combination principle, excitation, critical and ionization potentials, fine structures of the spectral lines, Sommerfeld's extension of the Bohr's theory(Qualitative only). | Chandrama
Kalita | 8 | September | 13/8/18-
31/8/18 | | 3. | Vector atom model, Bohr magnetron, spinning electron; quantum numbers; Pauli's exclusion principle, source of radiation in external fieldsnormal Zeeman effect. | Chandrama
Kalita | 8 | September | 13/8/18-
31/8/18 | | 4. | X-rays: origin and production of x-rays, continuous and characteristic X-rays, Mosley's law; diffraction of X-rays by | Chandrama
Kalita | 6 | October | 1/10/18-
31/10/18 | | | crystals, Bragg's law, Compton
Effect. | | | | | |----|--|---------------------|----|-----------|----------------------| | 5. | Frank and Hertz experiment,
matter wave, Davisson and
Germer experiment. | Chandrama
Kalita | 6 | November | 1/11/18-
15/10/18 | | c) | Relativity: | | | | | | 1. | Michelson-Morley experiment, postulates of special theory of relativity, Lorentz transformation equations (derivation not necessary), time dilation, length contraction, mass variation, mass energy relation, veločity addition theorem. | Jayanta Deka | 8 | August | 2/8/18-
12/8/18 | | d) | Renewable energy sources: | | | | | | 1. | Need and importance, different renewable energy sources, solar energy, solar radiatant, instruments for measuring solvabliation, solar heaters (air and liquid), solar radiation concentrators (reflector elc.), solar cooker, photovoltaic effect, solar cells. | Jayanta Deka | 10 | September | 13/8/18-
31/8/18 | # **Department Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 100 | | Course | BSc (Semester) | Paper no | 502 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|----------------------| | 1 | To determine the value of 'H' with the help of a deflection and vibration magnetometer. | Utpala
Baishya | 8 | August | 2/8/18-
31/8/18 | | 2 | To determine the surface tension of a liquid by capillary rise method. | Utpala
Baishya | 8 | September | 1/9/18-
31/9/18 | | 3 | To draw I-D curve for the given prism with the help of a spectrometer and hence find the angle of minimum deviation. | Chandrama
Kalita | 8 | October | 1/10/18-
30/10/18 | | 4 | To determine the wavelength of sodium light by Newton's ring. | Chandrama
Kalita | 8 | November | 1/11/18-
10/11/18 | # **Department of Physics** # SBMS COLLEGE, SUALKUCHI Session: 2018-2019 (January- June) | Department | Physics | Semester | 2 nd (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 201 | | Unit | Course Content | Allotted
to | Hours | Month | date | |------|---|-------------------|-------|----------|-------------------------| | a) | MATHEMATICAL METHODS-
II: | | | | | | 1. | Integration of vectors: Ordinary integration of vectors. Line integral, surface integral and volume integrals and their applications to simple problems. Green's theorem in the plane Gauss's divergence theorem, Stokes' theorem and their applications. | Utpala
Baishya | 12 | January | 20/1/2019 to
31/1/19 | | 2 | Curvilinear co-ordinate system: Curvilinear co-ordinates, Unit vectors and scale factors in curvilinear co-ordinates systems, orthogonal curvilinear co-ordinates, plane polar co- ordinates, right circular cylindrical co-ordinates and spherical polar co-ordinates. Arc length, area and volume elements in each of these systems. Divergence, curl and Laplacian in plane polar co- ordinates, right circular cylindrical co-ordinates and spherical polar co- ordinates. Application of above | Utpala
Baishya | 15 | February | 1/2/19 to 20/2/19 | | | concept to simple physical phenomena. | | | | | |----|---|-------------------|----|----------|-----------------------| | 3 | Gamma and Dirac Delta function: Elementary introduction to Gamma function and Dirac Delta function. | Utpala
Baishya | 8 | February | 21/2/19 to
28/2/19 | | b) | PROPERTIES OF MATTER: | | | | | | 1 | Elasticity: Different type of elastic constants and relation among them. Energy in a strained ARN-S body, torsion of a rod, torsional oscillation, bending of beam, bending moment, cantilever. Le Som depression of a cantilever considering the weight of the beam. | Utpala
Baishya | 12 | March | 1/3/19 to
31/3/19 | | 2 | Surface tension: Surface tension, relation between surface tension and surface energy E=S-T dS/dT, excess pressure inside a curved liquid surface. Determination of surface tension by ripple method. | Utpala
Baishya | 7 | April | 1/4/19 to
30/4/19 | | 3 | <u>Viscosity</u> : Poiseullie's equation for flow of a liquid through narrow tube. Determination of viscosity by rotating viscometer. | Utpala
Baishya | 6 | May | 1/5/19 to
15/5/19 | ### **Department of Physics** ## SBMS COLLEGE, SUALKUCHI $Session: 2018-2019 \; (January-June) \\$ | Department | Physics | Semester | 2 nd (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 202 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|---------------------------|-----------------------| | 1 | Kinetic theory of gases, pressure exerted by a gas using spherical polar coordinates, degree of freedom, law of equipartition of energy. Maxwell Law of velocity distribution, Maxwellian mean free path, transport phenomena viscosity, Brownian motion (Einstein's Langevin's theory), experimental determination of Avogadro's number, examples of Brownian motion. | Chandrama
Kalita | 15 | January
to
February | 20/1/19 to
20/2/19 | | 2 | Equation of state of a gas, Andrew's experiment, Van der Waal's equation of state, critical constants and law of corresponding states. Thermal conductivity, Fourier equation for rectilinear flow of heat and its solution. Platinum resistance thermometer
Thermal conductivity, Fourier equation for rectilinear flow of heat and its solution. Platinum resistance thermometer. | Chandrama
Kalita | 15 | February
to March | 21/2/19 to
15/3/19 | | 3 | Zeroth and first law of thermodynamics, specific heats of gases, isothermal and adiabatic processes. Reversible and irreversible processes, conversion of heat into work. Carnot cycle, Carnot's theorem. Second law of thermodynamics: Heat engine, Kelvin-Planck statement of second law, Clausius statement of second law, equivalence of Kelvin-Planck and Clausius statements, Kelvin's thermodynamical scale of temperature and its relation to perfect gas scale, Clausius formulation of entropy. entropy changes in reversible and irreversible processes, entropy of ideal gas, relation between entropy and probability. | Jayanta
Deka | 15 | March to
April | 16/3/19to
12/4/19 | | 4 | Enthalpy, Gibbs-Helmholtz | Jayanta | 15 | April to | 19/4/19 to | |---|---------------------------------------|---------|----|----------|------------| | | function, Maxwell's thermodynamic | Deka | | May | 10/5/19 | | | relations and their applications, | | | | | | | Gibbs phase rule, triple point, Joule | | | | | | | Thomson effect, adiabatic | | | | | | | demagnetization. Black body | | | | | | | radiation, Kirchoff's law of | | | | | | | radiation, radiation pressure, | | | | | | | Stefan-Boltzmann law, Wein's | | | | | | | displacement law, Rayleigh-Jean's | | | | | | | law, Planck's radiation law. | | | | | # **Department of Physics** ## SBMS COLLEGE, SUALKUCHI Session: 2018-2019 (January-June) | Department | Physics | Semester | 2 nd (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 50 | | Course | BSC (Semester) | Paper no | 203 | | Unit | Course Content | Allotted to | Hours | Mounth | date | |------|--|---------------------|-------|----------|--------------------| | 1 | To determine the focal length of a given convex mirror with the help of a convex lens. | Chandrama
Kalita | 6 | February | 1/2/19-
28/2/19 | | 2 | To determine the value of J, the mechanical equivalent of heat by Joule's calorimeter. | Utpala
Baishya | 6 | March | 1/3/19-
15/3/19 | | 3 | To determine the refractive index of a liquid by using a plane mirror and a convex lens. | | 6 | March | 1/3/19-
31/3/19 | | 4 | To convert a given galvanometer into a voltmeter of given range and then calibrate it with help of an ammeter and standard resistance. | Jayanta Deka | 6 | April | 1/4/19-
30/3/19 | | 5 | Determination of surface tension of | Utpala | 6 | May | 1/5/19- | |---|-------------------------------------|---------|---|-----|---------| | | water solutions of minerals or | Baishya | | | 15/5/19 | | | organic compounds using capillary | | | | | | | method and study the variation of | | | | | | | surface tension with concentration. | | | | | | | (Additional experiment for those | | | | | | | Colleges having Star College | | | | | | | Scheme). | | | | | | | | | | | | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 2 nd | |------------|---------------|----------|-------------------| | | | | (General)(Theory) | | Subject | Physics | Marks | 60 | | Course | BSc(Semester) | Paper no | 201 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|----------------------|---------------------| | a) | Current Electricity: | | | | | | 1. | Electric current density, continuity equation, Ohm's law as JoE, Applications of Kirchoff's law to solve electrical network problem. | Chandrama
Kalita | 6 | January-
February | 20/1/19-
19/2/19 | | 2. | Moving coil ballistic galvanometer its sensitivity and uses. | Chandrama
Kalita | 2 | February | 20/2/19-
5/3/19 | | 3. | Electromagnetic induction: Self and mutual induction, coefficient of coupling. reciprocity theorem, self induction of a long solenoid, mutual induction of two solenoids. | Chandrama
Kalita | 5 | March | \6/3/19-
18/3/19 | | 4. | Transient growth and decay of current in LR, CR and LCR circuits. | Chandrama
Kalita | 5 | March | 19/3/19-
10/4/19 | | 5. | Alternating current: Generation of alternating current, current and potential across resistive, inductive and capacitive elements and their phase relationships, power factor, concept of rotating magnetic field. a.c. motor, transformer, reflected impedance in transformer. | Chandrama
Kalita | 6 | April | 11/4/19-
30/4/19 | |----|---|---------------------|---|----------------------|---------------------| | b) | Electrostatics: | | | | | | 1. | Gauss's theorem and its applications to determine field due to linear, plane and spherical charge distribution, potential due to dipole, derivation of field due to a dipole Mutual potential energy of two dipoles. | Utpala
Baishya | 7 | January-
February | 20/1/19-
28/2/19 | | 2. | Capacity of parallel plate capacitor, spherical and cylindrical capacitor, effect of dielectric on capacity of capacitor, mechanical force on charged conductor, energy stored in a charged capacitor. | Utpala
Baishya | 7 | March | 1/3/19-
20/3/19 | | 3. | Dielectrics, Electric polarisation of dielectrics, polarizability, Relation between D, E, & P. Gauss's law in dielectric. Electrostatic boundary conditions in dielectric medium. | Utpala
Baishya | 6 | March-
April | 21/3/19-
28/4/19 | | c) | Magnetism: | | | | | | 1. | Electric current as source of magnetic field, Equivalent magnetic dipole produced by a current flowing though a circular conductor, magnetic dipole moment, force and couples on dipole placed in a uniform magnetic field, magnetic shell, potential due to magnetic shell, magnetic intensity, induction and intensity of magnetisation, magnetic susceptibility, permeability, hystersis and hystersis loss. | Jyanta
Deka | 8 | April-
May | 29/4/19-28/5/19 | | 2. | Dia, para and ferro magnetism,
Atomic dipole moment, Langevin's
Classical theory of para magnetism. | Jyanta
Deka | 4 | May | 29/5/19-
10/5/19 | # **Department of Physics** ## SBMS COLLEGE, SUALKUCHI Session: 2018-2019 (January-June) | Department | Physics | Semester | 4 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 401 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|-------------------|-------|----------------------|---------------------| | a) | MATHEMATICAL METHODS-IV: | | | | | | 1. | Differential Equations. Second order linear differential equations, series method of solutions Basu (Frobenius), Legendre's differential equations, Legendre's polynomial, Hermite's differential equations, Hermite's polynomial, generating function, spherical harmonics, orthogonal properties & recurrence relations. | Utpala
Baishya | 25 | January-
February | 20/1/19-
28/2/19 | | 2. | Probability theory: Mutually exclusive events, theorem of total probability, compound events and theorem of compound probability. Probability distributions -Gaussian distribution, mean and standard deviation. | Utpala
Baishya | 15 | March | 1/3/19-
31/3/19 | | b) | INTRODUCTON TO COMPUTER
AND COMPUTER
PROGRAMMING: | Utpala
Baishya | | | | | 1. | Functional organization of a digital computer-CPU, memory, | Utpala
Baishya | 20 | April-
May | 1/4/19 -
10/5/19 | | input/output unit. Flowcharts, | | | |--------------------------------------|--|--| | Algorithms, High level Computer | | | | languages, programming in one high | | | | level language (either FORTRAN- | | | | 95 or C or C). Data types, different | | | | types of variables, important | | | | commands, I/O statements, relation | | | | and logical statements, transfer | | | | staternents, string manipulation, | | | | subscripted variables, Functions and | | | | subroutines | | | # **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 402 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|----------------------|---------------------| | a) | WAVE OPTICS: | | | | | | 1 | Interference: Concept of light wave and its equation, complex representation of superposition of waves, meaning of coherence, to show that
interference fringes are hyperbolic in general, condition for straight fringes, Stokes law, interference due to Fresnel's biprism, interference by a plane parallel film, wedge shaped film, colour of thin film, Newton's rings, Michelson interferometer and its application for | Chandrama
Kalita | 15 | January-
February | 20/1/19-
28/2/19 | | | finding difference in wavelengths. | | | | | |---------|--|---------------------|----|---------------|---------------------| | 2 | Diffraction: Difference between Fresnel and Fraunhofer classes, halfperiod zones and strips, Zone plate and its lensing property, diffraction at a straight edge and at a circular aperature (with B.S.Agun reference to microscope), Fraunhofer diffraction due to a single slit, double slit and transmission gratng, wavelength measurement by the plane transimission grating, resolving power of a grating. theory of concave grating. | Chandrama
Kalita | 15 | March-April | 1/3/19-
15/4/19 | | 3
b) | Polarisation: Double refraction, optic axis and CaCO, crystal, plane, circular and elliptically polarised light, Retarding plates and their uses for producing and analysing different polarised light, specific rotation of plane of polarisation on and half-shade polarimeter. SPECIAL THEORY OF | Chandrama
Kalita | 10 | April-
May | 16/4/19-
10/5/19 | | | RELATIVITY: | | | | | | 1 | Formulation of Special Theory of Relativity and Relativistic Kinematics: The need for a new model of kinematics (relativity). Electromagnetism and null result of Michelson-Morley experiment, negation of ether concept. Postulates of special theory of relativity. Galilean transformation (Newtonian kinematics) and Lorentz transformation. Application of Lorentz transformation,. Length contraction, time dilation and their examples and application to physical situations (viz. muon decay). Relativistic transformation of velocity. Relativistic Doppler Effect and twin paradox. | Jayanta
Deka | 12 | February | 1/2/19-28/2/19 | | 2 | Relativistic Momentum and Energy, | Jayanta | 8 | March | 1/3/19- | |---|--------------------------------------|---------|---|-------|---------| | | Space-time: Relativistic momentum | Deka | | | 20/3/19 | | | and energy. Equivalence of mass | | | | | | | and energy. Massless particles (i.e. | | | | | | | photons). The geometry of space- | | | | | | | time and space-time interval. Time- | | | | | | | like and space-like events Concept | | | | | | | of four-vectors and Minkowski | | | | | | | space. | | | | | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 50 | | Course | BSc (Semester) | Paper no | 403 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------|--------------------| | 1 | To adjust and focus the given spectrometer using Schuster's method and then determine the refractive index of the material of the prism. | Chandrama
Kalita | 8 | February | 2/2/19-
28/2/19 | | 2 | To determine he wavelength of light emitted by a monochromatic source with the help of Newton's ring arrangement. | Chandrama
Kalita | 8 | March | 1/3/19-
31/3/19 | | 3 | To study the variation in liquid column height with diameter of capillary tube and determine the surface tension of the liquid. | Utpala
Baishya | 6 | April | 1/4/19-
10/4/19 | | 4 | To determine the value of acceleration due to gravity using Katter's Pendulum. | Jayanta Deka | 6 | May | 1/5/19-
10/5/19 | ## **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (General) | |------------|----------------|----------|---------------------------| | Subject | Physics | Marks | 40 | | Course | BSc (Semester) | Paper no | 401 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------------------|---------------------| | 1 | Fermat's principle: application to reflection and refraction at plane and curved boundaries, reflection through combination of two thin lenses, dispersion produced by lens, spherical and chromatic aberration and their remedies, achromatic combination of lenses, spectrometer | Utpala
Baishya | 6 | January-
February | 20/1/19-
10/2/19 | | 2 | Huygen's wave theory: Formula for refraction at a spherical surface, formula for thin convex and concave lenses. | Utpala
Baishya | 4 | February | 11/2/19-
28/2/19 | | 3 | Interference of light: Fresnel biprism, colour of thin films, Newton's ring phenomenon. | Utpala
Baishya | 4 | March | 1/3/19-
31/3/19 | | 4 | Diffraction of light: Fresnel and Fraunhofer classes of diffraction, diffraction at a straight edge and single slit, diffraction grating. | Chandrama
Kalita | 5 | January-
February | 20/1/19-
10/2/19 | | 5 | Polarisation of light: plane
polarised light, polarisation on
reflection, Brewster's law, double | Chandrama
Kalita | 5 | February | 11/2/19-
28/2/19 | | | refraction, Nicol prism, rotation of plane of polarization by optically active substances, specific rotation, polarimeter. | | | | | |---|--|---------------------|---|--------------------|---------------------| | 6 | Ramsden's and Huygen's eye piece, aplanatic foci. | Chandrama
Kalita | 3 | March | 1/3/19-
7/3/19 | | 7 | Michelson interferometer,
resolving and dispersive power of
grating, production and analysis of
polarised light, retarding plates,
Babinet's compensator. | Jayanta Deka | 5 | February | 10/2/19-
25/2/19 | | 8 | Laser and its characteristics, stimulated absorption, spontaneous and stimulated emission, population inversion, basic elements of laser, Ruby laser (principle only). | Jayanta Deka | 5 | February-
March | 26/2/19-
5/3/19 | # **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 50 | | Course | BSc (Semester) | Paper no | 402 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|-------|--------------------| | 1 | To determine the modulus of rigidity of the material of a rod by static method. | Chandrama
Kalita | 6 | March | 1/3/19-
31/3/19 | | 2 | To determine the moment of inertia of symmetrical body about an axis by torsional oscillation method. | Utpala
Baishya | 6 | April | 1/4/19-
30/4/19 | | 3 | 3 | To determine the refractive index | Utpala | 4 | May | 1/5/19- | |---|---|-----------------------------------|--------------|---|-------|---------| | | | of a liquid by using plane mirror | Baishya | | | 15/5/19 | | | | and convex lens. | | | | | | 4 | 1 | To determine the electrochemical | Jayanta Deka | 6 | March | 1/3/19- | | | | equivalent of copper by using an | | | | 31/3/19 | | | | ammeter and copper voltameter. | | | | | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 601 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|-------------|-------|----------|-----------| | a) | NUCLEAR PHYSICS: | | | | | | 1 | Nuclear forces and Stability of | Jayanta | 8 | January- | 20/1/19- | | | Nuclei: Concept of packing fraction | Deka | | February | 5/2/19 | | | and binding energy, binding energy | | | | | | | curve and its significance. Nucleon- | | | | | | | nucleon forces qualitative | | | | | | | discussions on nuclear force. Brief | | | | | | | outline of Yukawas meson theory, | | | | | | | Nuclear stability, neutron proton | | | | | | | ratio in stable nuclei, stability curve, | | | | | | | odd-even rules of nuclear stability. 8 | | | | | | | Lectures | | | | | | 2 | Alpha decay: Cause of alpha decay, | Jayanta | 6 | February | 6/2/19- | | | basic a-decay process, range and | Deka | | | 18/2/19 | | | energy of a-decay, a-decay | | | | | | | systematics, Geiger Nuttle rules, | | | | | | | Qualitative discussion on the theory | | | | | | | of a-decay. 6 Lectures | | | | | | 3 | Beta-decay: Types of ß-decays, | Jayanta | 5 | February | 19/2/19 - | | | conditions of B & B decay and K | Deka | | | 26/2/19 | | | capture, B-ray spectrum, Pauli's neutrino hypothesis. | | | | | |---
---|-----------------|----|-----------------|---------------------| | 4 | Gamma-rays: y-rays and their origin. Interaction of y-particle with matter. | Jayanta
Deka | 2 | February | 27/2/19-
28/2/19 | | 5 | Nuclear models: Evidence in favour of liquid properties of nuclei, Liquid drop model Bethe-Weisackar's mass formula. Applications of mass formula estimation of fission energy, prediction of most stable member of an isobaric family. Shell model (Basic concepts only). | Jayanta
Deka | 8 | March | 1/3/19-
12/3/19 | | 6 | Nuclear Reactions: Types of nuclear reactions, conserved quantities of nuclear reaction, energies of nuclear reaction - Q-value & its experimental determination. Exoergic & endoergic reactions. Cross-section of nuclear reaction and its unit. Nuclear fission and chain reaction, critical size, controlled chain reaction and basic principle of nuclear reactor. Nuclear fusion reaction-basic concepts of fusion reactions, fusion barrier, fusion and thermonuclear reactions (PP chains only). | Jayanta
Deka | 15 | March-
April | 13/3/19 -
8/4/19 | | 7 | Accelerators: Necessity of charge particle acceleration construction and working principle of linear accelerator. Construction and working principle of a cyclotron. | Jayanta
Deka | 5 | April | 9/4/19-
30/4/19 | | 8 | Detectors: Principles of detection of charge particles. Construction and working principle of gas filled detectors. Ionization chamber - its construction & working principle. 9. Cosmic rays: Origin of cosmic rays, primary & secondary cosmic rays and their composition. The East West effect. Latitude, longitude & altitude effec, Extensive Air Shower (EAS). | Jayanta
Deka | 5 | May | 2/5/19-
15/5/19 | # **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 602 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-------------------|-------|----------------------|---------------------| | a) | MATHEMATICAL METHODS: | | | | | | | Introduction to tensor, transformation of coordinates, contravariant and covariant tensor, tensorial character of physical quantities, symmetric and antisymmetric tensors, kronecker delta. Rules for combination of tensors- addition, subtraction, outer multiplication, contractions and inner multiplications. | Utpala
Baishya | 15 | January-
February | 20/1/19-
15/2/19 | | b) | SOLID STATE PHYSICS: | | | | | | 1. | The idea of amorphous and crystalline solids, The crystal lattice and translation vectors, unit cell, types of crystal lattice, Miller indices, diffraction of X-rays, use of Bragg's law to the determination of lattice constants. | Utpala
Baishya | 10 | February | 16/2/19-
28/2/19 | | 2. | The different types of crystal bonding: ionic, covalent, metallic, Van der Waal and hydrogen bondings, cohesive energy of ionic | Utpala
Baishya | 5 | March | 1/3/19-
10/3/19 | | | crystal, Madelung constant. | | | | | |----|---|-------------------|----|-------|--------------------| | 3. | Free electron theory of metals, Boltzmann's equation of state, electronic specific heat, electrical and thermal conductivity of metals, Wiedemann-Franz law. (Quantum Mecanical treatment to be used).Bloch theorem in one dimension, Kronig-Penny model of energy bands of solids, distinction among metal, insulator and semiconductor, intrinsic and extrinsic semiconductors (qualitative discussion only). | Utpala
Baishya | 15 | | 11/3/19-31/3/19 | | 4. | Introductory concept of superconductivity, Meissner effect, types 1 and type II superconductors. | Utpala
Baishya | 5 | April | 1/4/19-
31/4/19 | | 5. | Magnetic properties of solids: Magnetization, magnetic intensity, magnetic susceptibility, permeability, hysteresis, B-H curve and energy loss in hysteresis, different classes of magnetic material, magnetic moment, Bohr magneton, Larmor precession, Classical theory of paramagnetism (Langevin's theory and Curie law), Weiss theory(Quantum Mecanical treatment to be used), relation between para and ferromagnetism, Ferromagnetic domain. | Utpala
Baishya | 10 | May | 2/5/19-
15/5/19 | ## **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 603 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------|---------------------| | 1 | MODERN OPTICS: | | | | | | 1. | Optics of crystals: Wollaston prism,
Rochon prism, Jones calculus,
Interference of polarized light:
interference due to crystal plates in
plane polarised light, Babinet
compensator. Principle of liquid
crystal display. | Chandrama
Kalita | 8 | January | 20/1/19-
31/1/19 | | 2. | Lasers: Characteristics of laser light, absorption Spontaneous emission, Stimulated Vémission, Einstein coefficients, Population inversion and light amplification, Essential components of the laser, Ruby and He-Ne laser (principles only). Elementary idea about nonlinear optics: Second Harmonic Generation. | Chandrama
Kalita | 10 | February | 1/2/19-
28/2/19 | | 3. | Holography: Formation of a hologram, Reconstruction of the hologram (mathematical aspect). | Chandrama
Kalita | 6 | March | 1/3/19-
12/3/19 | | 4. | Optical Fibers: Types of fibers; propagation of a ray through step index fiber: numerical aperture, | Chandrama
Kalita | 10 | March | 13/3/19-
31/3/19 | | | multipath dispersion; propagation
through graded index fiber. Basic
idea about communication through
an optical fiber cable (Block
diagram). | | | | | |----|---|---------------------|----|-------|---------------------| | 5. | Optical components & Spectrographs: Ramsden and Huygen's eyepieces, oil immersion objective, Prism spectrograph (Glass and quartz), Grating spectrograph. | Chandrama
Kalita | 6 | April | 1/4/19-
12/4/19 | | b) | ELECTROMAGNETIC THEORY: | | | | | | 1. | Electromagnetic field equation in integral and differential form, displacement current, Maxwell's equations, Energy Conservation Law-Poynting theorem and Poyntingvector. | Chandrama
Kalita | 6 | April | 16/4/19-
30/4/19 | | 2. | Electromagnetic wave equation, velocity of electromagnetic wave, Monochromatic plane wave equation in free space and conducting medium. Reflection and Refraction of plane electromagnetic wave for normal and oblique incidence, Snell's law, reflection and transmission co-efficient, Fresnel's equations, Polarisation of electromagnetic wave, linear, circular and elliptical polarization. Brewster's law. | Chandrama
Kalita | 14 | May | 2/5/19-
16/5/19 | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 604 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------|---------------------| | a) | STATISTICAL MECHANICS: | | | | | | 1. | Statistical system, and its coordinates, specification of a state in statistical mechanics, Macrostate and microstate, phase space, ensemble, Boltzmann entropy relation ergodic hypothesis, postulate of equal a priori probability, density of phase points is phase space, Liouville' theorem. | Jayanta
Deka | 8 | February | 1/2/19-
28/2/19 | | 2. | Symmetry of wavefunction, restriction
regarding the number of particles in given state, different types of statistics Maxwell-Boltzmann(MB), Bose-Einstein (BE) and Fermi-Dirac(FD) Statistics, Most probable distribution relation in MB, BE and FD statistics and their comparison. Degeneracy Factor, Density of state. | Chandrama
Kalita | 7 | March | 1/3/19-
20/3/19 | | 3 | Application of MB statistics to derive Maxwell distribution law (velocity, energy momentum and frequency). | Chandrama
Kalita | 5 | March | 21/3/19-
31/3/19 | | 4 | Fermi energy and Fermi temperature, Fermi distribution function, Application of FD statistics to discuss electronic specific heat. | Utpala
Baishya | 5 | April | 1/4/19-
13/3/19 | |----|---|-------------------|----|------------------|--------------------| | 5 | Application of BE statistics to explain BE condensation and to derive Black body radiation formula. | Utpala
Baishya | 5 | May | 2/5/19-
15/5/19 | | b) | COMPUTER APPLICATIONS: | | | | | | 1 | Programming exercise (either FORTRAN-95 or C or C): simple mathematical series generation and summation, sorting of numbers largest of n numbers, sorting a list ascending/descending order, solution of quadratic equation, solution of simultaneous linear equation, least square graph fitting (straight line and quadratic curve) of given data, iterative methods, implementation of Runge-Kutta 4th order method of solving differential equation and Simpson's rule for integration. | Kishor Das | 30 | February-
May | 2/2/19-
15/5/19 | # **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major | |------------|----------------|----------|------------------------| | | | | Practical) | | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 605 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|----------|--------------------| | 1 | To determine the Q- factor of a series resonance circuit containing L. C and R for three different values of R. | Chandrama
Kalita | 8 | February | 1/2/19-
20/2/19 | | 2 | To determine the value of "J' (the mechanical equivalent of heat) by Callender and Bern's method. | Chandrama
Kalita | 10 | March | 5/3/19-
25/3/19 | | 3 | To determine the value of self-induction of a coil with the help of Anderson's Bridge. | Chandrama
Kalita | 8 | April | 1/4/19-
12/4/19 | | 4 | To measure the phase difference between he sgnal accros R and C of an R-C network using CRO and hence find the value of the resistor and frequency of the signal. | Jayanta Deka | 8 | May | 1/5/19-
15/5/19 | # **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major | |------------|----------------|----------|------------------------| | | | | Practical) | | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 606 | | Unit | Course Content | Allotted | Hours | Month | date | |------|---------------------------------------|----------|-------|-------|---------| | | | to | | | | | a) | PROJECT | | | | | | | (Experimental project work of any | Utpala | 8 | March | 1/3/19- | | | relevant topic within the syllabus of | Baishya | | | 31/3/19 | | | Physics, to be guided by a teacher | | | | | | | and to be submitted along with a | | | | | | | report) | | | | | |----|---|---------------|---|-------|--------------------| | b) | COMPUTER PROGRAMMING: | | | | | | 1. | To determine (a) mean, (b)standard deviation and (c)standard error of the given experimental data. | Kishor
Das | 8 | March | 1/3/19-
31/3/19 | | 2. | To analyse the supplied experimental data between two variables using least square straight line fitting programme. | Kishor
Das | 8 | April | 1/4/19-
30/4/19 | | 3. | To rearrange the supplied numerical data in ascending/descending order and find the largest/smallest number in a given list of numbers. | Kishor
Das | 8 | May | 2/5/19-
15/5/19 | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (General) | |------------|----------------|----------|---------------------------| | Subject | Physics | Marks | 80 | | Course | BSc (Semester) | Paper no | 601 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|-----------------|-------|----------------------|--------------------| | a) | Nuclear Physics: | | | | | | 1. | Concept of a Nucleus - its composition, mass, volume, density and temperature, units and dimension. | Jayanta
Deka | 5 | January-
February | 20/1/19-
5/2/19 | | 2. | Mass defect and packing fraction, total binding energy, binding energy per nucleon, binding energy curve & its | Jayanta
Deka | 6 | February | 6/2/19-
20/2/19 | | | | I | I | | 1 | |----|---|-----------------|---|----------|------------| | | significance, nucleon separation | | | | | | | energy, nuclear reactions, Q-value of a reaction, exothermic & | | | | | | | endothermic reactions. | | | | | | 3. | | Iovente | 5 | Echmony | 21/2/19- | | 3. | Type of radioactive decays, | Jayanta
Deka | 3 | February | 28/2/19 | | | radioactive decay law, concept of | Века | | | 28/2/19 | | | half life and disintegration constant, | | | | | | | natural radioactivity, radioactive | | | | | | | dating. Activity of radioactive sources, its unit. Radioisotopes - | | | | | | | their production & uses. | | | | | | 4. | • | Iovente | 5 | March | 1/3/19- | | 4. | Need of a particle accelerator, Linear Accelerator its construction | Jayanta
Deka | 3 | March | 15/3/19- | | | & working principle. Need of | Deka | | | 13/3/19 | | | nuclear Detectors. Ionization | | | | | | | Chamber - its construction & | | | | | | | working principle. | | | | | | | working principle. | | | | | | 5. | Primary and secondary cosmic rays | Jayanta | 5 | May | 2/5/19- | | | and their composition, EAS. | Deka | | | 15/5/19 | | c) | Electronics: | | | | | | 1. | Semiconductors, P-N junction | Chandrama | 8 | January- | 20/1/19- | | | unction dode, unbiased and biased | Kalita | | February | 5/2/19 | | | P-N junction, depletion layer, barrier | | | | | | | potential, junction capacitnice Volt- | | | | | | | ampere relations (derivation nod | | | | | | | NANury), photo diode, Zener diode, | | | | | | | Dentamer, OR, AND, NOT, NOR | | | | | | | and NAND Gates using diode and | | | | | | | transistor. | | | | | | 2. | Rectifier, half wave and full-wave, | Chandrama | 5 | February | 6/2/19- | | | efficiency of rectification, ripple | Kalita | | | 20/2/19 | | | factor, idea of filter circuit. | | | | | | 3. | Thevenin's and Norton's theorems, | Chandrama | 5 | March | 1/3/19- | | | maximum power transfer theorem | Kalita | _ | | 15/3/19 | | 4. | Transistor, different configurems, | Chandrama | 6 | March | 16/3/19- | | | maximum power transferathistor, | Kalita | | | 25/3/19 | | | alpha and beta of a transistor, | | | | | | | transistor as amplifier. | | _ | | 0.7/0.11.5 | | 5. | Biasing and Q-point of a transistor, | Chandrama | 5 | March | 26/3/19- | | | stability factors, biasing circuits. | Kalita | | | 31/3/19 | | 6. | Classification of amplifiers: class A, | Chandrama | 2 | April | 1/4/19- | | _ | B, C, voltage and power amplifiers. | Kalita | | | 10/4/19 | | 7. | Two port four terminal device and z, | Chandrama | 4 | April | 11/4/19- | | | y and h-parameters. Use of h- | Kalita | | | 30/4/19 | | I | parameters to find input and output | | | | | | | resistances, current, voltage and power gain of a small signal transistor amplifier. | | | | | |----|---|---------------------|----|----------|---------------------| | 8. | Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. | Chandrama
Kalita | 3 | May | 2/5/19-
5/5/19 | | c) | Electromagnetic waves: | | | | | | 1. | Electromagnetic wave spectrum, graphical representation of electromagnetic wave. | Chandrama
Kalita | 4 | May | 6/4/19-
10/5/19 | | 2. | Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | Chandrama
Kalita | 4 | May | 11/5/19-
15/5/19 | | d) | Solid State Physics | | | | | | 1. | Crystalline and amorphous state of substances, single crystal and polycrystalline substances, basis, crystal lattice, unit cell, primitive unit cell, translation vectors, lattice parameters, directions, lattice planes, Miller indices, inter-planar spacing | Utpala
Baishya | 10 | February | 6/2/19-
20/2/19 | | 2. | Crystallographic axes, Crystal systems and Bravais lattice. | Utpala
Baishya | 4 | March | 1/3/19-
15/3/19 | | 3. | Different types of bonding in solids, ionic, covalent, metallic and hydrogen bonding. | Utpala
Baishya | 5 | March |
16/3/19-
25/3/19 | | 4. | Classical free electron theory of | Utpala | 2 | April | 1/4/19- | ## **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 100 | | Course | BSc (Semester) | Paper no | 602 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|--------------------|-------|----------|---------------------| | 1 | To determine the value of g' by Kater's pendulum. | Utpala
Baishya | 8 | February | 1/2/19-
28/2/19 | | 2 | To determine the value of 'J', the mechanical equivalent of heat by Joule's calorimeter. | Utpala
Baishya | 6 | March | 1/3/19-
15/3/19 | | 3 | To determine the angle of minimum deviation and angle of the prism with the help of a spectrometer and hence find refractive index of the material of the prism. | Chandrama
Kaita | 8 | April | 1/4/19-
15/4/19 | | 4 | To assemble OR, AND and NOT gates using diode and transistor and verify their tuth tables. | Jayanta Deka | 6 | March | 16/3/19-
31/3/19 | | 5 | To draw the characteristics of- (i) a forward biased PN diode and (ii) reverse biased Zener diode and hence determine the ac resistance of the PN diode and breakdown voltage of the Zener diode. | Chandrama
Kaita | 6 | April | 16/4/19-
30/4/19 | #### DEPARTMENT OF PHYSICS ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | First semester | |------------|---------------------------|----------|----------------| | Subject | Mathematical
Physics I | Credit | 6 | | Course | | Paper No | PHY-HC-1016 | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted | Hours | Month | Date | |----------|-------------------------------------|----------|-------|-----------|-----------| | | | to | | | | | Unit I: | Revision: Properties of vectors | Dr. | 25 | August- | From | | Vector | under rotations. Scalar product and | Utpala | | September | 1/8/2019 | | Calculus | its invariance under rotations. | Baishya | | | to | | | Vector product, Scalar triple | | | | 10/9/2019 | | | product and their interpretation in | | | | | | | terms of area and volume | | | | | | | respectively. Scalar and Vector | | | | | | | fields. | | | | | | | Vector Differentiation: Directional | | | | | | | derivatives and normal derivative. | | | | | | | Gradient of a scalar field and its | | | | | | | geometrical interpretation. | | | | | | | Divergence and curl of a vector | | | | | | | field. Del and Laplacian operators. | | | | | | | Vector identities. Vector | | | | | | | Integration: Ordinary Integrals of | | | | | | | Vectors. Multiple integrals, | | | | | | | Jacobian. Notion of infinitesimal | | | | | | | line, surface and volume elements. | | | | | | | Line, surface and volume integrals | | | | | | | of Vector fields. Flux of a vector | | | | | | | field. Gauss' divergence theorem, | | | | | | | Green's and Stokes Theorems and | | | | | | | their applications (no rigorous | | | | | | | proofs). | | | | | |--|---|--------------------------|----|-----------|---------------------------------------| | Unit II: First and Second order Differential Equations | First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. | Dr.
Utpala
Baishya | 17 | September | From
11/9/2019
to
30/9/2019 | | Unit III:
Orthogonal
Curvilinear
Coordinates | Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. | Dr.
Utpala
Baishya | 6 | October | 1/10/2019
to
21/10/2019 | | Unit IV: Dirac Delta function and its Properties | Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function. Properties of Dirac delta function. | Dr.
Utpala
Baishya | 2 | October | From 22/10/2019 to 25/10/2019 | | Unit V:
Introduction
to
Probability | Independent random variables: Probability distribution functions; binomial, Gaussian and Poisson, with examples. Mean and variance. | Dr.
Utpala
Baishya | 4 | October | From 26/10/2019 to 31/10/2019 | | Unit VI:
Theory of
Errors | Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. Least-squares fit. | Dr.
Utpala
Baishya | 6 | November | From/
1/11/2019
to
7/11/2019 | | Lab | Introduction and Overview Computer architecture and organization, memory and Input/output devices. | Dr.
Utpala
Baishya | 30 | November | From 8/11/2019 to 25/11/2019 | | Basics of scientific computing Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow- emphasize the importance of making equations in terms of dimensionless variables, Iterative methods Review of C & C++/Python/ | | | |---|--|--| | Matlab/ Mathematica
Programming fundamentals | | | | Introduction to Programming, constants, variables and data types, operators and Expressions I/O statements, scanf and printf, c in and c out, Manipulators for data formatting, Control statements (decision making and looping statements) (if statement. if-else Statement. Nested if Structure. else-if Statement. Ternary Operator. goto Statement. switch Statement. Unconditional and Conditional Looping. while Loop. do-while Loop. for Loop. Breakand continue Statements. Nested Loops), Arrays (1D & 2D) and strings, user defined functions, Structures and Unions, Idea of classes and objects. Programs Sum & average of a list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search. | | | | Random number generation
Area of circle, area of square,
volume of sphere, value of pi (π) | | | | Solution of Algebraic and Transcendental equations by Newton Raphson methods Solution of linear and quadratic equation, solving α = tanα, I = lo(sinα/α)² in optics Interpolation by Newton Gregory Forward and Backward difference formula Evaluation of trigonometric functions e.g. sinθ, cosθ, tanθ etc. Numerical Integration (Trapezoidal and Simpson rules), Monte Carlo method Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop Solution of Ordinary Differential Equations (ODE) First order Differential equation Euler, modiffed Euler and Runge- | Transcendental equations by Newton Raphson methods Solution of linear and quadratic equation, solving α = $tan\alpha$, $I = Io(sin\alpha/\alpha)^2$ in optics Interpolation by Newton Gregory Forward and Backward difference formula Evaluation of trigonometric functions e.g. $sin\theta$, $cos\theta$, $tan\theta$ etc. Numerical Integration (Trapezoidal and Simpson rules), Monte Carlo method Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop Solution of Ordinary Differential Equations (ODE) First order | | |
1 | T | |---|---|--
--|-------|---| | Gregory Forward and Backward difference formula Evaluation of trigonometric functions e.g. sin0, cos0, tan0 etc. Numerical Integration (Trapezoidal and Simpson rules), Monte Carlo method Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop Solution of Ordinary Differential Equations (ODE) First order Differential equation Euler, | Gregory Forward and Backward difference formula Evaluation of trigonometric functions e.g. sinθ, cosθ, tanθ etc. Numerical Integration (Trapezoidal and Simpson rules), Monte Carlo method Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop Solution of Ordinary Differential Equations (ODE) First order Differential equation Euler, modifted Euler and Runge-Kutta (RK) second and fourth order methods First order differential equation (a) Radioactive decay (b) | T
 It
 m
 S
 cq
 = | Franscendental equations by Newton Raphson methods Solution of linear and quadratic equation, solving α = $tan\alpha$, $I = I_0(sin\alpha/\alpha)^2$ in | | | | Evaluation of trigonometric functions e.g. sinθ, cosθ, tanθ etc. Numerical Integration (Trapezoidal and Simpson rules), Monte Carlo method Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop Solution of Ordinary Differential Equations (ODE) First order Differential equation Euler, | Evaluation of trigonometric functions e.g. sinθ, cosθ, tanθ etc. Numerical Integration (Trapezoidal and Simpson rules), Monte Carlo method Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop Solution of Ordinary Differential Equations (ODE) First order Differential equation Euler, modifted Euler and Runge-Kutta (RK) second and fourth order methods First order differential equation (a) Radioactive decay (b) | | Gregory Forward and | | | | Kutta (RK) second and fourth order methods First order differential equation (a) Radioactive decay (b) | Newton 8 law of cooling. | f e e N () () () () () () () () () () () () () | Evaluation of trigonometric functions e.g. $\sin \theta$, $\cos \theta$, $\tan \theta$ etc. Numerical Integration Trapezoidal and Simpson rules), Monte Carlo method Given Position with equidistant ime data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis coop Solution of Ordinary Differential Equations ODE) First order Differential equation Euler, modifted Euler and Runge-Kutta (RK) second and courth order methods First order differential equation (a) Radioactive decay (b) | | | # TEACHING PLAN DEPARTMENT OF PHYSICS SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | First semester | |------------|-----------|----------|----------------| | Subject | Mechanics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HC-1026 | | | | | | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted to | Hours | Month | Date | |--|---|----------------------------|-------|--------|--------------------------------------| | Unit I:
Fundamentals
of Dynamics | Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Momentum of variable mass system: motion of rocket. Motion of a projectile in Uniform gravitational field Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. | Dr.
Chandrama
Kalita | 6 | August | From 1/8/2019 to 16/8/2019 | | Unit II: Work
and Energy | Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non-conservative forces. Law of conservation of Energy. | Mr.
Jayanta
Deka | 4 | August | From
17/8/2019
to
22/8/2019 | | Unit III:
Collisions | Elastic and inelastic collisions between particles. Centre of Mass and | Dr.
Chandrama
Kalita | 3 | August | From 23/8/2019 to | | | Laboratory frames. | | | | 26/8/2019 | |---|--|----------------------------|----|-----------------------------|--------------------------------------| | Unit IV:
Rotational
Dynamics | Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation. | Mr.
Jayanta
Deka | 12 | August
and
September | From 27/8/2019 to 17/9/2019 | | Unit V:
Elasticity | Relation between Elastic constants. Twisting torque on a Cylinder or Wire. Cantilever. | Dr.
Chandrama
Kalita | 3 | September | From
18/9/2019
to
23/9/2019 | | Unit VI:
Fluid Motion | Kinematics of Moving
Fluids: Poiseuille's Equation
for Flow of a Liquid through
a Capillary Tube. | Dr.
Chandrama
Kalita | 2 | September | From 24/9/2019 to 27/9/2019 | | Unit VII:
Gravitation
and Central
Force Motion | energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. | Dr.
Chandrama
Kalita | 8 | September
and
October | From 28/9/2019 to 16/10/2019 | | Unit VIII: | SHM: Simple Harmonic | | | | From | | Oscillations | Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. Compound Pendulum. | Chandrama
Kalita | | and
November | 17/10/2019
to
4/11/2019 | |---|---|---------------------------------------|----|-----------------------------|-------------------------------| | Unit IX:
Non-Inertial
Systems | Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. | Mr.
Jayanta
Deka | 4 | November | From 5/11/2019 to 13/11/2019 | | Unit X:
Special
Theory of
Relativity | Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum. | Mr.
Jayanta
Deka | 10 | November | From 14/11/2019 to 26/11/2019 | | Lab | A minimum of seven experiments to be done. 1. Measurements of length (or diameter) | Dr.
Chandrama
Kalita and
Mr. | 15 | November
and
December | From 27/11/2019 to 12/12/2019 | | Г | | | | |---|------------------------|--------|--| | | | ayanta | | | | screw gauge, De | eka | | | | Spherometer and | | | | | travelling micro- | | | | | scope. | | | | | 2. To study the Motion | | | | | <u> </u> | | | | | 1 & | | | | | calculate (a) Spring | | | | | constant and (b) | | | | | Rigidity modulus. | | | | | 3. To determine the | | | | | Moment of Inertia of | | | | | a cylinder about two | | | | | different axes of | | | | | symmetry by torsional | | | | | oscillation method. | | | | | 4. To determine | | | | | Coefficient of | | | | | | | | | | Viscosity of water by | | | | | Capillary Flow | | | | | Method (Poiseuille's | | | | | method). | | | | | 5. To determine the | | | | | Young's Modulus of | | | | | the material of a wire | | | | | by Searle's | | | | | apparatus. | | | | | 6. To determine the | | | | | Modulus of Rigidity | | | | | of a Wire Static | | | | | method. | | | | | | | |
| | | | | | | value of g using Bar | | | | | Pendulum. | | | | | 8. To determine the | | | | | value of g using | | | | | Kater's Pendulum. | | | | | 9. To determine the | | | | | height of a building | | | | | using a Sextant. | | | | | 10. To determine g and | | | | | velocity for a freely | | | | | falling body using | | | | | Digital Timing | | | | | | | | | | Technique | | | # TEACHING PLAN DEPARTMENT OF PHYSICS SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | First semester | |------------|-----------|----------|----------------| | Subject | Mechanics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HG/RC-1016 | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted to | Hours | Month | Date | |-------------------------------------|---|----------------------------|-------|----------------------------|--------------------------------------| | Unit I :
Vectors | Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients | Dr. Utpala
Baishya | 6 | August | From
1/8/2019
to
9/8/2019 | | Unit II:
Laws of
Motion | Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. | Mr. Jayanta
Deka | 10 | August | From
10/8/2019
to
26/8/2019 | | Unit III:
Momentum
and Energy | Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. | Dr.
Chandrama
Kalita | 6 | August
and
September | From 27/8/2019 to 2/9/2019 | | Unit IV :
Rotational
Motion | Angular velocity and angular momentum. Torque. Conservation of angular momentum | Dr.
Chandrama
Kalita | 5 | September | From 3/9/2019 to 10/9/2019 | | Unit V :
Gravitation | Newton's Law of Gravitation. Motion of a | Mr. Jayanta
Deka | 7 | September | From 11/9/2019 | | | particle in a central force
field (motion is in a plane,
angular momentum is
conserved, areal velocity is
constant). Kepler's Laws
(statement only). | | | | to
20/9/2019 | |--|--|-----------------------------------|----|----------------------------|------------------------------| | Unit VI :
Oscillations | Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. Compound pendulum. | Mr. Jayanta
Deka | 7 | September | From 21/9/2019 to 30/9/2019 | | Unit VII :
Elasticity | Hooke's law - Stress-strain diagram – Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants – Work done in stretching and work done in twisting a wire – Twisting couple on a cylinder – Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia – q, η and σ by Searles method. | Dr.
Chandrama
Kalita | 8 | October | From 1/10/2019 to 21/10/2019 | | Unit VIII:
Special
Theory of
Relativity | Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities. | Dr. Utpala
Baishya | 7 | October
and
November | From 22/10/2019 to 4/11/2019 | | Lab | A minimum of five experiments to be done. 1. Measurements of length (or diameter) | Dr.
Chandrama
Kalita
and | 16 | November | From 5/11/2019 to 25/11/2019 | | using vernier caliper, Mr. Jayanta | |------------------------------------| | screw gauge and Deka | | Spherometer. | | 2. To determine the | | Moment of Inertia of | | a Symmetrical body | | about an axis by | | torsional oscillation | | method. | | 3. To determine the | | Young's Modulus of | | the material of a wire | | by Searle's apparatus. | | 4. To determine the | | Modulus of Rigidity | | of a Wire Static | | method. | | 5. To determine the | | elastic Constants of a | | wire by Searle's | | method. | | 6. To determine the value | | | | of g using Bar | | Pendulum. | | 7. To determine the value | | of g using Kater's | | Pendulum. | | 8. To study the Motion | | of Spring and | | calculate (a) Spring | | constant and (b) value | | of g. | | | ## **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 301 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------------------|-------------------------| | a) | MATHEMATICAL
METHODS-III: | | | | | | 1. | Properties of matrices, Transpose matrix, complex conjugate matrix, Hermitian matrix, special square matrix, unit matrix, diagonal matrix, Co-factor matrix, adjoint of a matrix, self-adjoint matrix, symmetric matrix, anti-symmetric matrix, túnitary matrix, orthogonal matrix, trace of a matrix, inverse matrix. | Utpala
Baishya | 15 | August-
September | 2/08/19-30/9/19 | | 2. | Eigenvalue problems, Cayley-
Hamilton Theorem,
Diagonalization of matrices. | Utpala
Baishya | 6 | October | 1/10/19to10/10/19 | | 3. | Co-ordinate transformations, rotation in two dimensions, rotation in three dimensions. | Utpala
Baishya | 8 | October | 11/10/19 to
20/11/19 | | b) | ELECTROSTATICS: | | | | | | 1. | Electric field, Electric field due to
a uniformly charged (a) wire, (b)
ring, and (c) disc.
Divergence of Electric field,
Gauss's law in integral and
Applications of Gauss's law. Curl
of an electric field, Electric
potential, electric potential due to a | Chandrama
Kalita | 14 | August | 2/08/19-31/8/19 | | | uniformly abanced (a) vying (b) | | | | | |----|--|-----------|----|------------|-------------------| | | uniformly charged (a) wire, (b) | | | | | | | ring, and (c) disc. Electric dipole, | | | | | | | Potential and field due to a dipole, | | | | | | | dipole in a uniform external | | | | | | | electric field, dipole- dipole | | | | | | | interaction. Multipole expansion of | | | | | | | electrostatic potential due to a | | | | | | | volume | | | | | | | distribution of charge. | | | | | | 2. | Electrostatic boundary conditions. | Chandrama | 10 | September | 1/09/19-30/8/19 | | | Electrostatic energy. Energy of (a) | Kalita | | | | | | an assembly of P.39 Bijle point | | | | | | | charges, (b) uniformly charged | | | | | | | sphere. Laplace's and Poisson's | | | | | | | equations, P-47 boundary | | | | | | | conditions and Uniqueness | | | | | | | theorem, Solutions of Laplace's | | | | | | | equation in one dimension Electric, | | | | | | | potential and intensity (a) inside an | | | | | | | infinite parallel plate capacitor, (b) | | | | | | | inside spherical capacitor, and (c) | | | | | | | due to a long and uniformly | | | | | | | charged conducting wire. | | | | | | 3. | Method of trical image with | Chandrama | 4 | October | 1/10/19 -10/10/19 | | | examples of (a) infinite grounded | Kalita | | | | | | conducting, plane electrical and (b) | 11001 | | | | | | grounded conducting sphere. | | | | | | 4. | Dielectrics: induced dipoles, | Chandrama | 7 | October - | 11/10/19- | | '' | atomic polarizability, polar and | Kalita | • | November | 15/11/19 | | | nonpolar molecules, polarization. | Taire | | Trovenieer | 13/11/19 | | | The electric field of a polarized | | | | | | | object, bound charges, The electric | | | | | | | field inside a dielectric, Gauss's | | | | | | | law in the presence of dielectrics, | | | | | | | Electric displacessent, linear | | | | | | | dielectrics, susceptibility, | | | | | | | permitivity and dielectric constant, | | | | | | | | | | | | | | Clausius equation. Massotti | | | | | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 302 | | Unit | Course Content | Allotted | Hours | Month | date | |------|--|-----------------|-------|-------------------------|------------------------| | a) | CURRENT ELECTRICTY: | | | | | | 1. | Electric current density, continuity equation, Ohm's law, Applications of Kirchoff's law to solve electrical network problem, Kelvin double bridge for low resistance measurement, moving coil ballistic galvanometer and its nd its sensitivity | Jayanta
Deka | 10 | August | 2/8/19-
31/9/19 | | 2. | Electromagnetic induction: Self and mutual induction, coefficient of
coupling, reciprocity theorem, self induction of a long solenoid, mutual induction of two solenoids, measurement of L. and M using dic source and ballistic galvanometer. | Jayanta
Deka | 10 | September | 1/9/19-
25/9/19 | | 3. | Transient growth and decay of current in LR, CR and LCR circuits, oscillatory discharge. Thermo electricity: Coefficients of thermo-emf, thermoelectric power | Jayanta
Deka | 8 | September to
October | 26/9/19 -
10/10/19 | | 4. | Alternating current: Generation of alternating current, Phasor (complex number method) method of analyzing a.c. circuits, current and potential across resistive, inductive and capacitive elements and their phase relationships, | Jayanta
Deka | 10 | October | 11/10/19 –
31/10/19 | | 5. | power factor, LR, CR and LCR (series and parallel) circuits, quality factor, resonance, Maxwell's LC bridge and Anderson's bridge. Rotating magnetic field, a.c. motor, transformer, reflected impedance in transformer. use of transformer. | Jayanta
Deka | 7 | November | 1/11/19 -
15/11/19 | |----|---|--------------------|---|------------------------|-----------------------| | b) | MAGNETOSTATICS: | | | | | | 1. | Magnetic field, Lorentz force,
Cyclotron motion, cycloid motion,
Biot-Savart law. Magnetic field
due to a steady current in (a)
straight conductor and (b)
a circular coil. Divergence and
Curl of a magnetic field. | Utpala
Baisshya | 7 | October to
November | 21/10/19-
5/11/19 | | 2. | Ampere's circuital few: magnetic field due to a (a) long straight conductor and (b) an infinite solenoid carrying a steady current, Magnetic scalar and vector potential. Force and torque on a current loop in a uniform magnetic field, Current loop as a magnetic dipole | Utpala
Baisshya | 8 | November | 6/11/19 –
15/11/19 | ## **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (Practical) | |------------|---------------|----------|-----------------------------| | | | | (Major) | | Subject | Physics | Marks | 50 | | Course | BSc(Semester) | Paper no | 303 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|------------------------| | 1 | To determine the horizontal component of earth's magnetic field using deflection and vibration magnetometer, | Utpala
Baishya | 6 | August | 2/8/19 to
15/8/19 | | 2 | To compare the values of two given low resistances using a potentiometer. | Jayanta Deka | 6 | August | 16/8/19 to
31/8/19 | | 3 | To determine the internal resistance of a given cell using a potentiometer. | Jayanta Deka | 6 | September | 1/9/19 to
15/9/19 | | 4 | To determine the end correction of a meter bride and than to determine the specific resistance of the material of a given wire with help of the meter hridge using end correction. | Chandrama
Kalita | 6 | September | 16/9/19 to 30/8/19 | | 5 | To convert a given galvanometer into an ammeter of given range and than calibrate it with the help of a copper voltameter. | Chandrama
Kalita | 6 | October | 1/10/19 to
15/10/19 | # **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (General) | |------------|---------------|----------|---------------------------| | Subject | Physics | Marks | 40 | | Course | BSc(Semester) | Paper no | 301 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|---------------------| | a) | Heat: | | | | | | 1. | Platinum resistance thermometer and thermocouple thermometer. | Utpala
Baishya | 4 | August | 2/8/19-
10/8/19 | | 2. | Kinetic theory of gases, expression of Maxwell's law of velocity distribution (deduction not necessary), degree of freedom, law of equipartition of energy, mean free path, Brownian motion. | Utpala
Baishya | 5 | August | 11/8/19-
20/8/19 | | 3 | Andrew's and Amagat's experiment, equation of state, Van-der-Waals' equation of state, reduced equation of state, critical constants. | Utpala
Baishya | 5 | September | 1/9/19-
15/9/19 | | 4. | Joule-Thomson effect, liquefaction of gases by Joule-Thomson effect. | Chandrama
Kalita | 4 | August | 2/8/19-
10/8/19 | | 5. | Phase, first order phase transitions,
Clausius-Clayperon equation, Gibbs'
phase rule, triple point. | Chandrama
Kalita | 4 | August | 11/8/19-
20/8/19 | | 6. | Radiation: Kirchhoff's law and its applications, relation between radiation pressure and energy density, Black body radiation, expressions of Stefan-Boltzmann law, Wien's displacement law, Rayleigh-Jean's law and | Chandrama
Kalita | 7 | September | 1/9/19-
20/9/19 | | | Planck's law of black body radiation. | | | | | |----|--|-----------------|---|-----------|---------------------| | b) | Thermodynamics: | | | | | | 1. | Zeroth law of themodynamics and concept of temperature. | Jayanta
Deka | 2 | September | 1/9/19-
6/9/19 | | 2. | Heat and work and their equivalence, First law of thermodynamics and concept of internal energy, Applications of first law of thermodynamics. | Jayanta
Deka | 4 | September | 7/9/19-
18/9/19 | | 3. | Inadequacy of first law of thermodynamics, Second law of thermodynamics, reversible and irreversible processes, isothermal and adiabatic processes, work done by perfect gas under isothermal and adiabatic expansion, Carnot engine and Carnot cycle, Thermodynamic scale of temperature. | Jayanta
Deka | 5 | September | 19/9/19-
30/9/19 | | 4. | Entropy, change of entropy in reversible and irreversible processes, Clousious inequality relation. | Jayanta
Deka | 3 | October | 1/10/19-
8/9/19 | | 5. | Maxwell's thermodynamic relations and their applications. | Jayanta
Deka | 2 | October | 9/9/19-
14/9/19 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 3 rd (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 50 | | Course | BSc (Semester) | Paper no | 302 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|-----------------------| | 1 | To study the elongation of a wire by different pulling forces using Searle's apparatus and find the value of Young's modulus. | Utpala
Baishya | 5 | August | 2/8/19-
31/8/19 | | 2 | To determine the value of g by bar pendulum. | Utpala
Baishya | 5 | September | 1/9/19-
30/9/19 | | 3 | To determine the specific resistance of the material of the given wire by Meter Bridge and then find the length of wire necessary to construct a one ohm coil. | Jayanta Deka | 5 | August | 2/8/19-
15/8/19 | | 4 | To determine the emf of a cell using a cell of known emf with the help of potentiometer. | Jayanta Deka | 5 | September | 1/9/19-
30/9/19 | | 5 | To determine the resistance per unit of the length of meter bridge wire by Carey-Foster method. | Chandrama
Kalita | 5 | October | 1/10/19-
15/10/19 | | 6 | 7. To convert a given galvanometer into a voltmeter of given range and then calibrate it with standard resistance and ammeter. | Chandrama
Kalita | 5 | October | 16/10/19-
30/10/19 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSC (Semester) | Paper no | 501 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------------------|-----------------------| | a) | MATHEMATICAL
METHODS-V: | | | | | | 1 | Algebraic operation, Argand diagram, vector representation, complex coniuures Euler's formula, De-Moiver's theorem. | Utpala
Baishya | 5 | August | 2/8/19to12/8/19 | | 2 | Analytic function of a complex variable, Derivative of F(z) and its analyticity, contour integrals, equivalent contours, Cauchy integral theorem, differentiation under integral sign. | Utpala
Baishya | 13 | August | 13/8/19 to
24/8/19 | | 3 | Series expansion: Taylor and
Laurent series and their simple
applications Residues, Zeros,
isolated singular points,
evaluation of residues. Evaluation
of definite intragrals. | Utpala
Baishya | 12 | August-
September | 25/8/19 to 30/9
19 | | b) | CLASSICAL MECHANICS: | | | | | | 1 | Central force motion, two body central force motion, two body motion as a one body problem, general properties of central force motion, Energy and momenturn as
constants of motion in central force, Energy equation involving only the radial motion, energy diagram and nature of orbits. | Chandrama
Kalita | 8 | August | 2/8/19
to12/8/19 | | 2 | Application of central force problem to motion under inverse | Chandrama
Kalita | 8 | August | 13/8/19 to
24/8/19 | |---|--|---------------------|----|-----------|-----------------------| | | square force field. solution of the | Talliu | | | 21/0/17 | | | equation of the path to find the | | | | | | | nature of the orbits as hyperbolic, | | | | | | | parabolic and elliptic. | | | | | | 3 | Constraints, generalized co- | Chandrama | 14 | September | 25/8/19 to 30/9 | | | ordinates, principle of virtual | Kalita | | | 19 | | | work. D' Alembert's principle and | | | | | | | Lagrange's equations of motion, | | | | | | | simple applications of Lagrangian | | | | | | | formulations (i) Atwood machine | | | | | | | (ii) simple pendulum (iii)
Keplerian motion (iv) bead | | | | | | | sliding on rotating wire. | | | | | | | (v)compound pendulum, | | | | | | | (vi)linear harmonic oscillator | | | | | | | Hamilton's principle, calculus of | | | | | | | variation, shortest distance | | | | | | | between two points as example, | | | | | | | Lagrange's equations from | | | | | | | Hamilton's principle, Hamiltonian | | | | | | | of a system, Hamilton's canonical | | | | | | | equations of motion, applications | | | | | | | of Hamilton's equations to simple | | | | | | | problems like simple pendulum, | | | | | | | Kepler's problem., Poisson | | | | | | | brackets. | | | | | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 502 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|-------------------|-------|-----------|------------------------| | 1 | Positive rays and their analysis: Thomson's mass parabola method, Aston's mass spectrograph, Bainbridge mass spectrograph. | Utpala
Baishya | 10 | August | 2/8/19 to
15/8/19 | | 2 | Rutherford's nuclear atom model, alpha scattering expt, deduction of the scattering formula. | Utpala
Baishya | 8 | August | 16/8/19 to
31/8/19 | | 3 | Atomic spectra: Bohr's theory of hydrogen spectra, energy level diagram, Ritz combination principle, resonance, excitation, critical and ionization potentials; fine structures of the spectral lines, Sommerfeld's extension of the Bohr's theory. | Utpala
Baishya | 12 | September | 1/9/19 to
31/9/19 | | 4 | Vector stom model: Spectra of alkali stoms, Bohr magneton; spinning electron; quantum numbers; Pauli's exclusion principle; explanation of the periodic classification of the clements; spectroscopic notations, source of radiation in external fields- normal Zeeman effect; anomalous Zeeman effect, Paschen-Back effect, Stark effect, Stern-Garlach experiment. | Utpala
Baishya | 15 | October | 1/10/19 to
31/10/19 | | 5 | X-Rays: Continuous and | Utpala | 8 | November | 1/11/19 to | |---|--|-------------------|---|----------|------------------------| | | Characteristics X-rays, Mosley's | Baishya | | | 15/11/19 | | | law, Compton effect | | | | | | 6 | Scattering of light: Rayleigh scattering formula; colour of the sky: polarisation of the scattered light; Raman effect, experimental study of Raman effect, quantum Raman effect, application of the effect. | Utpala
Baishya | 7 | November | 1/11/19 to
15/11/19 | # **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 503 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-----------------|-------|-----------|-----------------------| | a) | QUANTUM MECHANICS: | | | | | | 1. | Development of quantum mechanics in light of Black body radiation, failure of classical idea, Plank's quantum hypothesis, photoelectric effect and Compton effect. | Jayanta
Deka | 5 | August | 2/8/19 to
14/8/19 | | 2. | Matter wave: Wave particle duality, de Broglie wave associated with moving particles-(i) non relativistic and (ii) relativistic case, verification of matter waves by (i) Davisson Germer's experiment and (ii) G.P. Thomson's electron diffraction experiment. | Jayanta
Deka | 8 | August | 15/8/19 to
31/8/19 | | 3. | Complimentary principle of Neils | Jayanta | 7 | September | 1/9/19 to | | | Bohr, Heisenberg's Uncertainty Principle, Gamma ray microscope experiment, application of Uncertainty Principle. | Deka | | | 15/9/19 | |----|---|-----------------|----|-----------|---------------------| | 4. | Wave function and its probabilistic interpretation as probability amplitude; Continuity equation, probability density and probability current density J; Normalisation condition and normalised wave function; properties of well behaved wave function in quantum mechanics. Wave packets, Superposition of waves, phase velocity and group velocity and their relation. | Jayanta
Deka | 8 | September | 16/9/19 to 30/9/19 | | 5. | Introduction to operator formalism, Dynamical variable as operator (position, momentum and Hamiltonian), Eigenvalues and eigenfunction; Expectation value, Ehrenfest's theorem. Schrodinger wave equation (i) time dependent and (ii) time independent Correspondence Principle. Application of Schrodinger's wave equation (i) one dimensional step potential (ii) one dimensional potential barrier, Reflection and transmission coefficients and tunneling effect, (iii) a particle in a one dimensional potential well of infinite depth (iv) one dimensional harmonic oscillator.(v) Theory of hydrogen atom-separation of variables, radial solution. ASTROPHYSICS: | Jayanta
Deka | 12 | October | 1/10/19 to 20/10/19 | | 1. | Astrophysical Co-ordinates: | Hirak | 5 | August | 2/8/19 to | | 1. | Celestial coordinate systems, The right Ascension. Declination and Altitude-Azimuth coordinate | Choudhury | 3 | Tugust | 14/8/19 | | | systems. The ecliptic and annual motion of the Sun across the thy the Signs of Zotine Identifications of the Constellationsecure and bright star. | | | | | |----|--|--------------------|---|-----------|-----------------------| | 2. | Concept of time: Sidereal time and solar time; Greenwich Mean Time(GMT), standard time and local time; Julian date and its importance in astronomical observation. | Hirak
Choudhury | 5 | August | 15/8/19 to
31/8/19 | | 3 | Stellar Magnitude system and Distance measurement: The Stellar magnitude system and its relation with luminosity. Apparent and absolute magnitude and their relations with distances. Trigonometric and spectroscopic parallax to determine the distances. Difference magnitude systems. | Hirak
Choudhury | 5 | September | 1/9/19 to
15/9/19 | | 4. | Spectral Classification and H.R. Diagram: Spectral classification, color index, H-D classification. The H-R Diagram. Steller evolution and the evolutionary track of a star. | Hirak
Choudhury | 5 | September | 16/9/19 to
30/9/19 | ### **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 504 | | Unit | Course Content | Allotted to | Hours | Month | date | |------
--|---------------------|-------|-----------|-----------------------| | 1 | Volt-ampere relation of P-N junction diode (deduction not necessary), Energy band diagram of P-N diode, photo diode, LED, varactor diode and zener diode. Rectifiers- half wave and full wave with resistive load, efficiency, ripple factor, filters- series inductor, shunt capacitor, L-section and I-section. Voltage regulation and regulated Power Supply. Clipping and clamping circuits. | Chandrama
Kalita | 8 | August | 2/8/19 to
16/8/19 | | 2 | Thevenin, Norton and Millman theorem & maximum power transfer theorem. | Chandrama
Kalita | 6 | August | 17/82/19to
31/8/19 | | 3 | Transistor, different mode of operations and characteristics of transistor, basic transistor amplifier, load line and operating point (Q point) of transistor, Stabilization of Q point, transistor biasing circuits, two port (four terminals) device and z, y and h parameters, h parameter equivalent circuit, analysis of transistor amplifier (CE) with h parameters, current gain, voltage gain and power gain, input and output impedance, Classification of amplifiers, Class A, Class B and Class C amplifiers, cascade amplifiers, small signal RC coupled amplifier (CE) and its voltage and current gain in low, mid and high frequency, frequency response curve, Phase relation between input and output, Power amplifiers, power dissipation, Harmonic distortion, large signal Push Pull Amplifier (Class B) | Chandrama
Kalita | 14 | September | 1/9/19to
15/9/19 | | 4 | Concept of feedback, different types of feedback, advantages of negative feedback in amplifier, Barkhousen criterion, classification of oscillators, tuned collector oscillator, Phase shift(R-C) and Wein bridge oscillator, Multivibrators. | Chandrama
Kalita | 7 | September | 16/9/19 to
24/9 19 | |---|---|---------------------|----|-----------------|-----------------------| | 5 | Direct Coupled Amplifier, differential amplifier, introduction to IC. OPAM, characteristics of an ideal OPAM, common and differential mode, CMMR, inverting, non-inverting mode of OPAM, OPAM as scale changer, adder, subtractor, differentiator and integrator. | Chandrama
Kalita | 6 | September | 25/9/19 to
30/9/19 | | 6 | Modulation, need of modulation, Theories of AM and FM, side- bands, power content in different parts of the modulated wave, band width of AM and FM, modulators, amplitude, modulation circuits, circuit of square band-widulation and detection, SSB transmission, AM Transmitter (block diagrams), super heterodyne receiver (block diagraenic Introduction to radio wave propagation, ground or surface wave, space or tropospheric wave and sky wave. Working and uses of CRO, Introductory idea of microprocesser. | Chandrama
Kalita | 12 | October20/10/24 | 1/10/19 to 20/10/19 | | 7 | Binary Number System, Decimal to binary conversion, Binary to decimal conversion, Binary addition and subtraction. OR, AND, NOT, NOR and NAND Logic gates using P- N junction diode and transistors, Boolean Algebra, De Morgan's Theorem, Sequential circuits, Latch, RS, JK, MSJK, D and T flip flops. Introduction to binary transmission ASK, FSK and PSK. | Chandrama
Kalita | 7 | October | 21/10/19 to 30/10/19 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 75 | | Course | BSC (Semester) | Paper no | 505 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|-----------|------------------------| | 1 | To draw the characteristic curve of a photo cell and find the maximum velocity of the emitted electrons. | Chandrama
Kalita | 6 | August | 2/8/19
to15/8/19 | | 2 | To determine the value of Planck's constant with the help of photo cell a monochromatic filter | Jayanta Deka | 6 | August | 16/8/19
to31/8/19 | | 3 | To determine the value of Stefan's constant by electrical method using an incandescent electric bulb. | Utpala
Baishya | 4 | September | 1/9/19
to15/9/19 | | 4 | To calibrate a spectrometer with spectral lines of known wavelength and hence determine unknown wavelength of spectral lines emitted by a given source | Chandrama
Kalita | 6 | September | 16/9/18
to30/9/18 | | 5 | To study the variation of refractive index of the material of a prism with known wavelengths of spectral lines of a source and hence determine the unknown wavelength of a spectral line emitted by a source. | Chandrama
Kalita | 6 | October | 1/10/19 to
15/10/19 | | 6 | To determine he boiling point of the given liquid with the help of a Platinum Resistance thermometer. | Utpala
Baishya | 8 | October | 16/10/19 to 31/10/19 | ## **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 506 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|-----------------|-------|-----------|------------------------| | 1 | To verify De Morgan's theorem using IC 7400 and 7402. (Using Breadboard). | Jayanta
Deka | 8 | September | 5/9/19 to 25/9/19 | | 2 | To assemble (a) OR, (b) AND, (c) NOT and (d) NAND gate with resistance, diode and transistors using bread board and verify their truth table. (Using Breadboard). | Jayanta
Deka | 8 | October | 3/10/19 to
31/10/19 | | 3 | To draw the forward bias characteristic of a semiconductor diode and the reverse bias characteristic of a Zener diode and hence determine their DC and AC resistances. Also determine the breakdown voltage of the Zener diode (Using Breadboard). | Jayanta
Deka | 8 | November | 1/11/19 to
15/11/19 | ## **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (General) | |------------|----------------|----------|---------------------------| | Subject | Physics | Marks | 80 | | Course | BSc (Semester) | Paper no | 501 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-------------------|-------|-----------|----------------------| | a) | Mathematical methods: | | | | | | 1. | Vector Algebra, scalar and vector product with illustration from physics, vector triple products. | Utpala
Baishya | 5 | August | 2/8/19-
12/8/19 | | 2. | Vector calculus: Scalar and Vector fields with example from physics, space curve, differentiation of a vector with respect to a scalar, gradient of scalar, divergence and curl of vector with example from physics. | Utpala
Baishya | 10 | August | 13/8/19-
31/8/19 | | 3. | Line integral, surface integral
and volume integral. Gauss's
theorem, Stoke's and Green's
theorem. | Utpala
Baishya | 5 | September | 1/9/19-
10/9/19 | | 4. | Curvilinear coordinate system, coordinate line and coordinate surface, unit normal vectors and unit tangent vectors, scale factor, orthogonal curvilinear coordinates, cylindrical polar and spherical polar coordinate | Utpala
Baishya | 10 | October | 11/9/19-
30/10/19 | | | systems. | | | | | |----|--|---------------------|---|-----------|----------------------| | b) | Atomic Physics: | | | | | | 1. | Positive rays: analysis of positive rays, Aston and Bainbridge mass spectrographs. | Chandrama
Kalita | 5 | August | 2/8/19-
12/8/19 | | 2. | Bohr's theory of hydrogen spectra, energy level diagram, Ritz combination principle, excitation, critical and ionization potentials, fine structures of the spectral lines, Sommerfeld's extension of the Bohr's theory(Qualitative only). | Chandrama
Kalita | 8 | September | 13/8/19-
31/8/19 |
 3. | Vector atom model, Bohr magnetron, spinning electron; quantum numbers; Pauli's exclusion principle, source of radiation in external fieldsnormal Zeeman effect. | Chandrama
Kalita | 8 | September | 13/8/19-
31/8/19 | | 4. | X-rays: origin and production of x-rays, continuous and characteristic X-rays, Mosley's law; diffraction of X-rays by crystals, Bragg's law, Compton Effect. | Chandrama
Kalita | 6 | October | 1/10/19-
31/10/19 | | 5. | Frank and Hertz experiment, matter wave, Davisson and Germer experiment. Relativity: | Chandrama
Kalita | 6 | November | 1/11/19-
15/10/19 | | 1. | Michelson-Morley experiment, postulates of special theory of relativity, Lorentz transformation equations (derivation not necessary), time dilation, length contraction, mass variation, mass energy relation, velocity addition theorem. | Jayanta Deka | 8 | August | 2/8/19-
12/8/19 | | d) | Renewable energy sources: | | | | | | 1. | Need and importance, different | Jayanta Deka | 10 | September | 13/8/19- | |----|------------------------------------|--------------|----|-----------|----------| | | renewable energy sources, solar | | | | 31/8/19 | | | energy, solar radiatant, | | | | | | | instruments for measuring | | | | | | | solvabliation, solar heaters (air | | | | | | | and liquid), solar radiation | | | | | | | concentrators (reflector elc.), | | | | | | | solar cooker, photovoltaic effect, | | | | | | | solar cells. | | | | | ## **Department of Physics** ### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 100 | | Course | BSc (Semester) | Paper no | 502 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|----------------------| | 1 | To determine the value of 'H' with the help of a deflection and vibration magnetometer. | Utpala
Baishya | 8 | August | 2/8/19-
31/8/19 | | 2 | To determine the surface tension of a liquid by capillary rise method. | Utpala
Baishya | 8 | September | 1/9/19-
31/9/19 | | 3 | To draw I-D curve for the given prism with the help of a spectrometer and hence find the angle of minimum deviation. | Chandrama
Kalita | 8 | October | 1/10/19-
30/10/19 | | 4 | To determine the wavelength of sodium light by Newton's ring. | Chandrama
Kalita | 8 | November | 1/11/19-
10/11/19 | # TEACHING PLAN DEPARTMENT OF PHYSICS SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | Second semester | |------------|-------------------------|----------|-----------------| | Subject | Electricity & Magnetism | Credit | 6 | | Course | | Paper No | PHY-HC-2016 | | Remarks | | Marks | 100 | | Unit | Course conent | Allotted to | Hours | Month | Date | |-----------------------|----------------------------------|----------------------|-------|-----------------|---------------| | Unit I: | Electric field: Electric field | Dr. | 26 | January | From | | Electric | lines. Electric flux. Gauss' Law | Chandrama
Kalita, | | and
February | 20/1/20
to | | Field and
Electric | with applications to charge | Kanta, | | 1 Colual y | 23/2/20 | | Potential | distributions with spherical, | | | | | | 1 otentiai | cylindrical and planar | | | | | | | symmetry. Conservative nature | | | | | | | of Electrostatic Field. | | | | | | | Electrostatic Potential. | | | | | | | Laplace's and Poisson | | | | | | | equations. The Unique- ness | | | | | | | Theorem. Potential and Electric | | | | | | | Field of a dipole. Force and | | | | | | | Torque on a dipole. | | | | | | | Electrostatic energy of system | | | | | | | of charges. Electrostatic energy | | | | | | | of a charged sphere. | | | | | | | Conductors in an electrostatic | | | | | | | Field. Surface charge and force | | | | | | | on a conductor. Capacitance of | | | | | | | a system of charged | | | | | | | conductors. Parallel-plate | | | | | | | capacitor. Capacitance of an | | | | | | | isolated conductor. Method of | | | | | | | Images and its application to: | | | | | | | (1) Plane Infinite Sheet and (2) | | | | | | | Sphere. | | | | | | | | | | | | | Unit II: | Electric Field in matter. | Dr. Utpala | 8 | February | From | | Dielectric
Properties
of Matter
(Lectures | Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector \vec{D} . Relations between \vec{E} , \vec{P} and \vec{D} -Gauss' Law in dielectrics. | Baishya, | | And
March | 24/2/20
to
5/3/20 | |--|--|------------------------------|---|--------------------|----------------------------------| | Unit III:
Magnetic
Field | Magnetic Force on a point charge, definition and properties of magnetic field B̄→. Curl and Divergence. Vector potential A→. Magnetic Force on (1) a current carrying wire (2) between current elements. Torque on a current loop in a uniform magnetic field. Biot-Savart's law and its simple application: straight wire and circular loop. Current loop as a magnetic dipole and its dipole moment (analogy with electric dipole) Ampere's circuital law and its application to (1) Solenoid (2) Torus. | Dr. Utpala
Baishya , | 9 | March | From 6/3/20 to 18/3/20 | | Unit IV:
Magnetic
Properties
of Matter | Magnetization vector (M ⁺). Magnetic Intensity (H [→]). Magnetic Susceptibility and permeability. Relation between B [→] , H [→] , M ⁺ . Ferromagnetism. B-H curve and hysteresis. | ,
Dr. Utpala
Baishya , | 4 | March | From
19/3/20
to
24/3/20 | | Unit V:
Electroma
gnetic | Faraday's Law. Lenz's Law.
Self Inductance and Mutual | Mr. Jayanta
Deka | 6 | March
and April | From 25/3/20 to | | Induction | Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current. | | | | 5/4/20 | |---|--|--|----|------------------|----------------------------------| | Unit VI:
Electrical
Circuits | AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) 13 Quality Factor, and (4) Band Width. Parallel LCR Circuit. | Mr. Jayanta
Deka | 4 | April | From 6/4/20 to 12/4/20 | | Unit VII:
Network
Theorems | Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits. | Mr. Jayanta
Deka | 3 | April | From
13/4/20
to
20/4/20 | | Unit VIII:
Ballistic
Galvanom
eter | Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR. | Dr. Utpala
Baishya , | 3 | April | From 21/4/20 to 27/4/20 | | Lab | A minimum of seven experiments to be done. 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses. 2. To study the characteristics | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr. Jayanta
Deka | 14 | April and
May | From 28/4/20 to 25/5/20 | | |
 | | |--|------|---| | of a series RC Circuit. | | | | 3. To determine an unknown Low Resistance using Potentiometer. | | | | 4. To determine an unknown Low Resistance using Carey Foster's Bridge. | | | | 5. To compare capacitances using De' Sauty's bridge. | | | | 6. Measurement of field strength B→ and its variation in a solenoid (determine dB). | | _ | | 7. To verify the Thevenin and Norton theorems. | | | | 8. To verify the Superposition, and Maximum power transfer theorems. | | | | 9. To determine self inductance of a coil by Anderson's bridge. | | | | 10. To study response curve of a Series LCR circuit | | | | and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. | | | | 11. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. | | | | 12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. | | | | 13. Determine a high resistance | | | | by leakage method using
Ballistic Galvanometer. | | | |---|--|--| | 14. To determine self-inductance of a coil by Rayleigh's method. | | | | 15. To determine the mutual inductance of two coils by Absolute method. | | | # TEACHING PLAN DEPARTMENT OF PHYSICS SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | Second semester | |------------|----------------|----------|-----------------| | Subject | Waves & Optics | Credit | 6 | | | _ | | | |
Course | | Paper No | PHY-HC-2026 | | | | | | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|-----------------------------|-------|----------------------------|-------------------------| | Unit I:
Superpositi
on of
Collinear
Harmonic
Oscillations | Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences. | Dr.
Chandrama
Kalita, | 5 | January | From 20/1/20 to 29/1/20 | | Unit II: Superpositi on of Two Perpendicul ar Harmonic Oscillations | Graphical and Analytical
Methods. Lissajous Figures
with equal an unequal
frequency and their uses. | Dr.
Chandrama
Kalita, | 2 | January
And
February | From 30/1/20 to 1/2/20 | | Unit III:
Wave | Plane and Spherical | Dr.
Chandrama | 4 | February | From 2/2/20 | | Motion | Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. | Kalita, | | | to8/2/20 | |--|---|-----------------------------|---|--------------------------|------------------------------| | Unit IV:
Velocity of
Waves | Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction. | Dr.
Chandrama
Kalita, | 6 | February | From 9/2/20 to17/2/20 | | Unit V:
Superpositi
on of Two
Harmonic
Waves | Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. Superposition of N | Dr. Utpala
Baishya , | 7 | February
and
March | From
18/2/20
to 1/3/20 | | | Harmonic Waves. | | | | | |----------------------------------|---|------------------------------|---|-------|--------------------------| | Unit VI:
Wave Optics | Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. | ,
Dr. Utpala
Baishya , | 3 | March | From 2/3/20
To 8/3/20 | | Unit VII:
Interference | Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index. | Dr. Utpala
Baishya , | 9 | March | From 9/3/20 to 22/3/20 | | Unit VIII:
Interferomet
er | Michelson Interferometer- (1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, (5) Visibility of fringes. Fabry- Perot interferometer. | Mr. Jayanta
Deka | 4 | March | From 23/3/20 to 30/3/20 | | Unit IX:
Diffraction | Fresnel and Fraunhofer diffraction. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel diffraction pattern of a straight edge and at a circular aperture. Resolving Power of a telescope. | Mr. Jayanta
Deka | 9 | March
and
April | From 31/3/20 to 12/4/20 | |--------------------------------------|--|--|----|-----------------------|----------------------------------| | Unit X:
Fraunhofer
Diffraction | Single slit. Double slit. Multiple slits. Diffraction grating. Resolving power of grating. | Mr. Jayanta
Deka | 8 | April | From
13/4/20
to
28/4/20 | | Unit XI:
Holography | Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves. Point source holograms. | Mr. Jayanta
Deka | 3 | April
and May | From 29/4/20 to 5/5/20 | | Lab | A minimum of seven experiments to be done. 1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ2 – T law. 2. To study Lissajous | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr. Jayanta
Deka | 16 | May | From 6/5/20 to 25/5/20 | | Figures. | | | |----------------------------|--|--| | 3. Familiarization with: | | | | Schuster's focusing, | | | | determination of angle of | | | | prism. | | | | 4. To determine | | | | refractive index of the | | | | Material of a prism using | | | | sodium source. | | | | 5. To determine the | | | | dispersive power and | | | | Cauchy constants of the | | | | material of a prism using | | | | mercury source. | | | | 6. To determine | | | | wavelength of sodium | | | | light using Fresnel | | | | Biprism. | | | | 7. To determine | | | | wavelength of sodium | | | | light using Newton's | | | | Rings. | | | | 8. To determine the | | | | thickness of a thin paper | | | | by measuring the width of | | | | the interference fringes | | | | produced by a wedge- | | | | shaped Film. | | | | 9. To determine | | | | wavelength of (1) Na | | | | source and (2) spectral | | | | lines of Hg source using | | | | plane diffraction grating. | | | | 10. To determine | | | | dispersive power and | | | | resolving power of a plane | | | | diffraction grating. | | | | | | | # TEACHING PLAN DEPARTMENT OF PHYSICS SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | Second semester | |------------|-------------------------|----------|--------------------| | Subject | Electricity & Magnetism | Credit | 6 | | Course | | Paper No | PHY-HG/RC-
2016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |-------------------------------|--|------------------------------|-------|----------------------------|------------------------| | Unit I:
Vector
Analysis | Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). | Dr.
Chandrama
Kalita, | 12 | January
and
February | From 20/1/20 to 8/2/20 | | Unit II:
Electrostatics | Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem – Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical | ,
Dr. Utpala
Baishya , | 22 | February
and
March | From 9/2/20 to 7/3/20 | | | shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. | | | | | |--|--|-----------------------------|----|--------------------|------------------------| | Unit III:
Magnetism | Magnetostatics: Biot-Savart's law & its applications — straight conductor, circular coil,
solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia, para, and ferro-magnetic materials. | Dr.
Chandrama
Kalita, | 10 | March | From 8/3/20 to 22/3/20 | | Unit IV :
Electromagne
tic Induction | Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field. | Mr. Jayanta
Deka | 6 | March
and April | From 23/3/20 to 5/4/20 | | Unit V: Maxwell's Equations and EM Wave | Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. | ,
Mr. Jayanta
Deka | 10 | April | From 6/4/20 to 19/4/20 | |---|--|--|----|---------------|-------------------------| | Lab | 1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses. 2. Ballistic Galvanometer (a) Measurement of charge and current sensitivity (b) Measurement of CDR (c) Determine a high resistance by Leakage Method (d) To determine Self Inductance of a Coil by Rayleigh's Method. 3. To compare capacitances using De'Sauty's bridge. 4. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx). 5. To study the Characteristics of a Series RC Circuit. 6. To study the a series | Dr. Chandrama Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka | 14 | April and May | From 20/4/20 to 16/5/20 | | LCR circuit and determine its (a) | | |--|--| | Resonant Frequency, (b) Quality Factor | | | 7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q. | | | 8. To determine a Low
Resistance by Carey
Foster's Bridge. | | | 9. To verify the Thevenin and Norton theorem. | | | 10. To verify the Superposition, and Maximum Power Transfer Theorem. | | # **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 401 | | Unit | Course Content | Allotted | Hours | Month | date | |------|---------------------------------------|----------|-------|----------|----------| | | | to | | | | | a) | MATHEMATICAL METHODS- | | | | | | | <u>IV:</u> | | | | | | 1. | Differential Equations. Second order | Utpala | 25 | January- | 20/1/20- | | | linear differential equations, series | Baishya | | February | 28/2/20 | | | T | 1 | 1 | 1 | 1 | |----|--------------------------------------|---------|----|--------|----------| | | method of solutions Basu | | | | | | | (Frobenius), Legendre's differential | | | | | | | equations, Legendre's | | | | | | | polynomial, Hermite's differential | | | | | | | equations, Hermite's polynomial, | | | | | | | generating function, spherical | | | | | | | harmonics, orthogonal properties & | | | | | | | recurrence relations. | | | | | | 2. | Probability theory: Mutually | Utpala | 15 | March | 1/3/20- | | | exclusive events, theorem of total | Baishya | | | 31/3/20 | | | probability, compound events and | | | | | | | theorem of compound probability. | | | | | | | Probability distributions -Gaussian | | | | | | | distribution, mean and standard | | | | | | | deviation. | | | | | | b) | INTRODUCTON TO COMPUTER | Utpala | | | | | | AND COMPUTER | Baishya | | | | | | PROGRAMMING: | | | | | | 1. | Functional organization of a digital | Utpala | 20 | April- | 1/4/20 - | | | computer-CPU, memory, | Baishya | | May | 10/5/20 | | | input/output unit. Flowcharts, | | | | | | | Algorithms, High level Computer | | | | | | | languages, programming in one high | | | | | | | level language (either FORTRAN- | | | | | | | 95 or C or C). Data types, different | | | | | | | types of variables, important | | | | | | | commands, I/O statements, relation | | | | | | | and logical statements, transfer | | | | | | | statements, string manipulation, | | | | | | | subscripted variables, Functions and | | | | | | | subroutines | | | | | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 402 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------------------|--------------------| | a) | WAVE OPTICS: | | | | | | 1 | Interference: Concept of light wave and its equation, complex representation of superposition of waves, meaning of coherence, to show that interference fringes are hyperbolic in general, condition for straight fringes, Stokes law, interference due to Fresnel's biprism, interference by a plane parallel film, wedge shaped film, colour of thin film, Newton's rings, Michelson interferometer and its application for finding difference in wavelengths. | Chandrama
Kalita | 15 | January-
February | 20/1/20-28/2/20 | | 2 | Diffraction: Difference between Fresnel and Fraunhofer classes, halfperiod zones and strips, Zone plate and its lensing property, diffraction at a straight edge and at a circular aperature (with B.S.Agun reference to microscope), Fraunhofer diffraction due to a single slit, double slit and transmission gratng, wavelength measurement by the plane transimission grating, resolving power of a grating. theory of concave grating. | Chandrama
Kalita | 15 | March-
April | 1/3/20-
15/4/20 | | 3 | Polarisation: Double refraction, | Chandrama | 10 | April- | 16/4/20- | | b) | optic axis and CaCO, crystal, plane, circular and elliptically polarised light, Retarding plates and their uses for producing and analysing different polarised light, specific rotation of plane of polarisation on and half-shade polarimeter. SPECIAL THEORY OF | Kalita | | May | 10/5/20 | |----|--|-----------------|----|----------|--------------------| | 1 | RELATIVITY: Formulation of Special Theory of Relativity and Relativistic Kinematics: The need for a new model of kinematics (relativity). Electromagnetism and null result of Michelson-Morley experiment, negation of ether concept. Postulates of special theory of relativity. Galilean transformation (Newtonian kinematics) and Lorentz transformation. Application of Lorentz transformation,. Length contraction, time dilation and their examples and application to physical situations (viz. muon decay). Relativistic transformation of velocity. Relativistic Doppler Effect and twin paradox. | Jayanta
Deka | 12 | February | 1/2/20-28/2/20 | | 2 | Relativistic Momentum and Energy,
Space-time: Relativistic momentum
and energy. Equivalence of mass
and energy. Massless particles (i.e.
photons). The geometry of space-
time and space-time interval. Time-
like and space-like events Concept
of four-vectors and Minkowski
space. | Jayanta
Deka | 8 | March | 1/3/20-
20/3/20 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (Major | |------------|----------------|----------|------------------------| | | | | Practical) | | Subject | Physics | Marks | 50 | | Course | BSc (Semester) | Paper no | 403 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------|--------------------| | 1 | To adjust and focus the given spectrometer using Schuster's method and then determine the refractive index of the material of the prism. | Chandrama
Kalita | 8 | February | 2/2/20-
28/2/20 | | 2 | To determine he wavelength of light emitted by a monochromatic source with the help of Newton's ring arrangement. | Chandrama
Kalita | 8 | March | 1/3/20-
31/3/20 | |
3 | To study the variation in liquid column height with diameter of capillary tube and determine the surface tension of the liquid. | Utpala
Baishya | 6 | April | 1/4/20-
10/4/20 | | 4 | To determine the value of acceleration due to gravity using Katter's Pendulum. | Jayanta Deka | 6 | May | 1/5/20-
10/5/20 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (General) | |------------|----------------|----------|---------------------------| | Subject | Physics | Marks | 40 | | Course | BSc (Semester) | Paper no | 401 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------------------|---------------------| | 1 | Fermat's principle: application to reflection and refraction at plane and curved boundaries, reflection through combination of two thin lenses, dispersion produced by lens, spherical and chromatic aberration and their remedies, achromatic combination of lenses, spectrometer | Utpala
Baishya | 6 | January-
February | 20/1/20-
10/2/20 | | 2 | Huygen's wave theory: Formula for refraction at a spherical surface, formula for thin convex and concave lenses. | Utpala
Baishya | 4 | February | 11/2/20-
28/2/20 | | 3 | Interference of light: Fresnel biprism, colour of thin films, Newton's ring phenomenon. | Utpala
Baishya | 4 | March | 1/3/20-
31/3/20 | | 4 | Diffraction of light: Fresnel and Fraunhofer classes of diffraction, diffraction at a straight edge and single slit, diffraction grating. | Chandrama
Kalita | 5 | January-
February | 20/1/20-
10/2/20 | | 5 | Polarisation of light: plane polarised light, polarisation on reflection, Brewster's law, double refraction, Nicol prism, rotation of plane of polarization by optically active substances, specific rotation, polarimeter. | Chandrama
Kalita | 5 | February | 11/2/20-
28/2/20 | | 6 | Ramsden's and Huygen's eye piece, | Chandrama | 3 | March | 1/3/20- | |---|--|--------------|---|--------------------|---------------------| | | aplanatic foci. | Kalita | | | 7/3/20 | | 7 | Michelson interferometer,
resolving and dispersive power of
grating, production and analysis of
polarised light, retarding plates,
Babinet's compensator. | Jayanta Deka | 5 | February | 10/2/20-
25/2/20 | | 8 | Laser and its characteristics,
stimulated absorption, spontaneous
and stimulated emission, population
inversion, basic elements of laser,
Ruby laser (principle only). | Jayanta Deka | 5 | February-
March | 26/2/20-
5/3/20 | ## **Department of Physics** ### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 4 th (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 50 | | Course | BSc (Semester) | Paper no | 402 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--------------------------------------|-------------|-------|-------|---------| | | | | | | | | 1 | To determine the modulus of | Chandrama | 6 | March | 1/3/20- | | | rigidity of the material of a rod by | Kalita | | | 31/3/20 | | | static method. | | | | | | 2 | To determine the moment of inertia | Utpala | 6 | April | 1/4/20- | | | of symmetrical body about an axis | Baishya | | _ | 30/4/20 | | | by torsional oscillation method. | - | | | | | 3 | To determine the refractive index | Utpala | 4 | May | 1/5/20- | | | of a liquid by using plane mirror | Baishya | | - | 15/5/20 | | | and convex lens. | | | | | |---|---|--------------|---|-------|---------| | 4 | To determine the electrochemical | Jayanta Deka | 6 | March | 1/3/20- | | | equivalent of copper by using an ammeter and copper voltameter. | | | | 31/3/20 | | | ammeter and copper voltameter. | | | | | ## **Department of Physics** ### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 601 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|-----------------|-------|----------------------|---------------------| | a) | NUCLEAR PHYSICS: | | | | | | 1 | Nuclear forces and Stability of Nuclei: Concept of packing fraction and binding energy, binding energy curve and its significance. Nucleon- nucleon forces qualitative discussions on nuclear force. Brief outline of Yukawas meson theory, Nuclear stability, neutron proton ratio in stable nuclei, stability curve, odd-even rules of nuclear stability. 8 Lectures | Jayanta
Deka | 8 | January-
February | 20/1/20-
5/2/20 | | 2 | Alpha decay: Cause of alpha decay, basic a-decay process, range and energy of a-decay, a-decay systematics, Geiger Nuttle rules, Qualitative discussion on the theory of a-decay. 6 Lectures | Jayanta
Deka | 6 | February | 6/2/20-
18/2/20 | | 3 | Beta-decay: Types of ß-decays, conditions of B & B decay and K capture, B-ray spectrum, Pauli's neutrino hypothesis. | Jayanta
Deka | 5 | February | 19/2/20-
26/2/20 | | 4 | Gamma-rays: y-rays and their origin. Interaction of y-particle with matter. | Jayanta
Deka | 2 | February | 27/2/20-
28/2/20 | |---|---|-----------------|----|-----------------|---------------------| | 5 | Nuclear models: Evidence in favour of liquid properties of nuclei, Liquid drop model Bethe-Weisackar's mass formula. Applications of mass formula estimation of fission energy, prediction of most stable member of an isobaric family. Shell model (Basic concepts only). | Jayanta
Deka | 8 | March | 1/3/20-
12/3/20 | | 6 | Nuclear Reactions: Types of nuclear reactions, conserved quantities of nuclear reaction, energies of nuclear reaction - Q-value & its experimental determination. Exoergic & endoergic reactions. Cross-section of nuclear reaction and its unit. Nuclear fission and chain reaction, critical size, controlled chain reaction and basic principle of nuclear reactor. Nuclear fusion reaction-basic concepts of fusion reactions, fusion barrier, fusion and thermonuclear reactions (PP chains only). | Jayanta
Deka | 15 | March-
April | 13/3/20-
8/4/20 | | 7 | Accelerators: Necessity of charge particle acceleration construction and working principle of linear accelerator. Construction and working principle of a cyclotron. | Jayanta
Deka | 5 | April | 9/4/20-
30/4/20 | | 8 | Detectors: Principles of detection of charge particles. Construction and working principle of gas filled detectors. Ionization chamber - its construction & working principle. 9. Cosmic rays: Origin of cosmic rays, primary & secondary cosmic rays and their composition. The East West effect. Latitude, longitude & altitude effec, Extensive Air Shower (EAS). | Jayanta
Deka | 5 | May | 2/5/20-
15/5/20 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 602 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-------------------|-------|----------------------|---------------------| | a) | MATHEMATICAL METHODS: | | | | | | | Introduction to tensor, transformation of coordinates, contravariant and covariant tensor, tensorial character of physical quantities, symmetric and antisymmetric tensors, kronecker delta. Rules for combination of tensors- addition, subtraction, outer multiplication, contractions and inner multiplications. | Utpala
Baishya | 15 | January-
February | 20/1/20-
15/2/20 | | b) | SOLID STATE PHYSICS: | | | | | | 1. | The idea of amorphous and crystalline solids, The crystal lattice and translation vectors, unit cell, types of crystal lattice, Miller indices, diffraction of X-rays, use of Bragg's law to the determination of lattice constants. | Utpala
Baishya | 10 | February | 16/2/20-
28/2/20 | | 2. | The different types of crystal bonding: ionic, covalent, metallic, Van der Waal and hydrogen bondings, cohesive energy of ionic crystal, Madelung constant. | Utpala
Baishya | 5 | March | 1/3/20-
10/3/20 | | 3. | Free electron theory of metals, Boltzmann's equation of state, electronic specific heat, electrical and thermal
conductivity of metals, Wiedemann-Franz law. (Quantum | Utpala
Baishya | 15 | | 11/3/20-
31/3/20 | | | Mecanical treatment to be used). Bloch theorem in one dimension, Kronig-Penny model of energy bands of solids, distinction among metal, insulator and semiconductor, intrinsic and extrinsic semiconductors (qualitative discussion only). | | | | | |----|---|-------------------|----|-------|--------------------| | 4. | Introductory concept of superconductivity, Meissner effect, types 1 and type II superconductors. | Utpala
Baishya | 5 | April | 1/4/20-
31/4/20 | | 5. | Magnetic properties of solids: Magnetization, magnetic intensity, magnetic susceptibility, permeability, hysteresis, B-H curve and energy loss in hysteresis, different classes of magnetic material, magnetic moment, Bohr magneton, Larmor precession, Classical theory of paramagnetism (Langevin's theory and Curie law), Weiss theory(Quantum Mecanical treatment to be used), relation between para and ferromagnetism, Ferromagnetic domain. | Utpala
Baishya | 10 | May | 2/5/20-
15/5/20 | ### **Department of Physics** #### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 603 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------|---------------------| | 1 | MODERN OPTICS: | | | | | | 1. | Optics of crystals: Wollaston prism,
Rochon prism, Jones calculus,
Interference of polarized light:
interference due to crystal plates in
plane polarised light, Babinet
compensator. Principle of liquid
crystal display. | Chandrama
Kalita | 8 | January | 20/1/20-
31/1/20 | | 2. | Lasers: Characteristics of laser light, absorption Spontaneous emission, Stimulated Vémission, Einstein coefficients, Population inversion and light amplification, Essential components of the laser, Ruby and He-Ne laser (principles only). Elementary idea about nonlinear optics: Second Harmonic Generation. | Chandrama
Kalita | 10 | February | 1/2/20-
28/2/20 | | 3. | Holography: Formation of a hologram, Reconstruction of the hologram (mathematical aspect). | Chandrama
Kalita | 6 | March | 1/3/20-
12/3/20 | | 4. | Optical Fibers: Types of fibers; propagation of a ray through step index fiber: numerical aperture, multipath dispersion; propagation through graded index fiber. Basic idea about communication through an optical fiber cable (Block diagram). | Chandrama
Kalita | 10 | March | 13/3/20-
31/3/20 | | 5. | Optical components & Spectrographs: Ramsden and Huygen's eyepieces, oil immersion objective, Prism spectrograph (Glass and quartz), Grating spectrograph. | Chandrama
Kalita | 6 | April | 1/4/20-
12/4/20 | | b) | ELECTROMAGNETIC THEORY: | | | | | | 1. | Electromagnetic field equation in integral and differential form, displacement current, Maxwell's equations, Energy Conservation | Chandrama
Kalita | 6 | April | 16/4/20-
30/4/20 | | | Law-Poynting theorem and | | | | | |----|---|---------------------|----|-----|--------------------| | | Poyntingvector. | | | | | | 2. | Electromagnetic wave equation, velocity of electromagnetic wave, Monochromatic plane wave equation in free space and conducting medium. Reflection and Refraction of plane electromagnetic wave for normal and oblique incidence, Snell's law, reflection and transmission co-efficient, Fresnel's equations, Polarisation of electromagnetic wave, linear, circular and elliptical polarization. Brewster's law. | Chandrama
Kalita | 14 | May | 2/5/20-
16/5/20 | | | | | | | | # **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marka | 60 | | Course | BSc (Semester) | Paper no | 604 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|-----------------|-------|----------|--------------------| | a) | STATISTICAL MECHANICS: | | | | | | 1. | Statistical system, and its coordinates, specification of a state in statistical mechanics, Macrostate and microstate, phase space, ensemble, Boltzmann entropy relation ergodic hypothesis, postulate of equal a priori | Jayanta
Deka | 8 | February | 1/2/20-
28/2/20 | | | probability, density of phase points is phase space, Liouville' theorem. | | | | | |----|---|---------------------|----|------------------|---------------------| | 2. | Symmetry of wavefunction, restriction regarding the number of particles in given state, different types of statistics Maxwell-Boltzmann(MB), Bose-Einstein (BE) and Fermi-Dirac(FD) Statistics, Most probable distribution relation in MB, BE and FD statistics and their comparison. Degeneracy Factor, Density of state. | Chandrama
Kalita | 7 | March | 1/3/20-
20/3/20 | | 3 | Application of MB statistics to derive Maxwell distribution law (velocity, energy momentum and frequency). | Chandrama
Kalita | 5 | March | 21/3/20-
31/3/20 | | 4 | Fermi energy and Fermi temperature, Fermi distribution function, Application of FD statistics to discuss electronic specific heat. | Utpala
Baishya | 5 | April | 1/4/20-
13/3/20 | | 5 | Application of BE statistics to explain BE condensation and to derive Black body radiation formula. | Utpala
Baishya | 5 | May | 2/5/20-
15/5/20 | | b) | COMPUTER APPLICATIONS: | | | | | | 1 | Programming exercise (either FORTRAN-95 or C or C): simple mathematical series generation and summation, sorting of numbers largest of n numbers, sorting a list ascending/descending order, solution of quadratic equation, solution of simultaneous linear equation, least square graph fitting (straight line and quadratic curve) of given data, iterative methods, implementation of Runge-Kutta 4th order method of solving differential equation and Simpson's rule for integration. | Kishor Das | 30 | February-
May | 2/2/20-
15/5/20 | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 605 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|----------|--------------------| | 1 | To determine the Q- factor of a series resonance circuit containing L. C and R for three different values of R. | Chandrama
Kalita | 8 | February | 1/2/20-
20/2/20 | | 2 | To determine the value of "J' (the mechanical equivalent of heat) by Callender and Bern's method. | Chandrama
Kalita | 10 | March | 5/3/20-
25/3/20 | | 4 | To determine the value of self-induction of a coil with the help of Anderson's Bridge. | Chandrama
Kalita | 8 | April | 1/4/20-
12/4/20 | | | To measure the phase difference between he sgnal accros R and C of an R-C network using CRO and hence find the value of the resistor and frequency of the signal. | Jayanta Deka | 8 | May | 1/5/20-
15/5/20 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 606 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-------------------|-------|-------|--------------------| | a) | PROJECT | 10 | | | | | | (Experimental project work of any relevant topic within the syllabus of Physics, to be guided by a teacher and to be submitted along with a report) | Utpala
Baishya | 8 | March | 1/3/20-
31/3/20 | | b) | COMPUTER PROGRAMMING: | | |
| | | 1. | To determine (a) mean, (b)standard deviation and (c)standard error of the given experimental data. | Kishor
Das | 8 | March | 1/3/20-
31/3/20 | | 2. | To analyse the supplied experimental data between two variables using least square straight line fitting programme. | Kishor
Das | 8 | April | 1/4/20-
30/4/20 | | 3. | To rearrange the supplied numerical data in ascending/descending order and find the largest/smallest number in a given list of numbers. | Kishor
Das | 8 | May | 2/5/20-
15/5/20 | ## **Department of Physics** ### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (General) | |------------|----------------|----------|---------------------------| | Subject | Physics | Marks | 80 | | Course | BSc (Semester) | Paper no | 601 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-----------------|-------|----------------------|---------------------| | a) | Nuclear Physics: | | | | | | 1. | Concept of a Nucleus - its composition, mass, volume, density and temperature, units and dimension. | Jayanta
Deka | 5 | January-
February | 20/1/20-
5/2/20 | | 2. | Mass defect and packing fraction, total binding energy, binding energy per nucleon, binding energy curve & its significance, nucleon separation energy, nuclear reactions, Q-value of a reaction, exothermic & endothermic reactions. | Jayanta
Deka | 6 | February | 6/2/20-
20/2/20 | | 3. | Type of radioactive decays, radioactive decay law, concept of half life and disintegration constant, natural radioactivity, radioactive dating. Activity of radioactive sources, its unit. Radioisotopes - their production & uses. | Jayanta
Deka | 5 | February | 21/2/20-
28/2/20 | | 4. | Need of a particle accelerator, Linear Accelerator its construction & working principle. Need of nuclear Detectors. Ionization Chamber - its construction & working principle. | Jayanta
Deka | 5 | March | 1/3/20-
15/3/20 | | c) Electronics: 1. Semiconductors, P-N junction unction dode, unbiased and biased P-N junction (depletion layer, barrier potential, junction capacitnice Voltampere relations (derivation nod NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | 5. | Drimary and cocondary coomic reve | Igyonto | 5 | May | 2/5/20- | |---|------------|---|--------------|---------------|----------|---------------------| | c) Electronics: 1. Semiconductors, P-N junction unction dode, unbiased and biased P-N junction, depletion layer, barrier potential, junction capacitnice Voltampere relations (derivation nod NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. Kalita 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic waves. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | <i>J</i> . | • | _ | 3 | iviay | 15/5/20 | | 1. Semiconductors, P-N junction unction dode, unbiased and biased P-N junction, depletion layer, barrier potential, junction capacitnice Voltampere relations (derivation nod NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | a) | * | Deka | | | 13/3/20 | | unction dode, unbiased P-N junction, depletion layer, barrier potential, junction capacitnice Voltampere relations (derivation nod NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic wave spectrum, graphical representation of electromagnetic waves. 1. Electromagnetic waves spectrum, graphical representation of electromagnetic waves. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | | | C1 1 | 0 | T | 20/1/20 | | P-N junction, depletion layer, barrier potential, junction capacitnice Voltampere relations (derivation nod NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave,
efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | 1. | , , | | 8 | January- | 20/1/20- | | potential, junction capacitnice Voltampere relations (derivation nod NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | | * | Kalita | | February | 5/2/20 | | ampere relations (derivation nod NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic waves: 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | | | | | | NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic waves. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | · · · | | | | | | Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | ` | | | | | | and NAND Gates using diode and transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | • / • • | | | | | | transistor. 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | | | | | | 2. Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | | | | | | efficiency of rectification, ripple factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 2 | | Chandrama | 5 | Echmiomy | 6/2/20- | | factor, idea of filter circuit. 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of
amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | ۷. | | | 3 | February | 20/2/20 | | 3. Thevenin's and Norton's theorems, maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | • | Xama | | | 20/2/20 | | maximum power transfer theorem 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic waves spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 3 | | Chandrama | 5 | March | 1/3/20- | | 4. Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic waves: 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | <i>J</i> . | , | | 3 | IVIAICII | 15/3/20 | | maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 1 | • | | 6 | March | 16/3/20- | | alpha and beta of a transistor, transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | '- | | | 3 | 17141011 | 25/3/20 | | transistor as amplifier. 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | | | Tanta | | | 23/3/20 | | 5. Biasing and Q-point of a transistor, stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | * | | | | | | stability factors, biasing circuits. 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 5. | | Chandrama | 5 | March | 26/3/20- | | 6. Classification of amplifiers: class A, B, C, voltage and power amplifiers. 7. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. | | | | | | 31/3/20 | | B, C, voltage and power amplifiers. Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 6. | Classification of amplifiers: class A, | Chandrama | 2 | April | 1/4/20- | | y and h-parameters. Use of h- parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | B, C, voltage and power amplifiers. | Kalita | | | 10/4/20 | | parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 7. | Two port four terminal device and z, | Chandrama | 4 | April | 11/4/20- | | resistances, current, voltage and power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from
Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | • | Kalita | | | 30/4/20 | | power gain of a small signal transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | | | | | | transistor amplifier. 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | | | | | | 8. Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | | | | | | for sustained oscillations, Tuned collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | | | | | | collector oscillator. c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 8. | | | 3 | May | 2/5/20- | | c) Electromagnetic waves: 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | * | Kalita | | | 5/5/20 | | 1. Electromagnetic wave spectrum, graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | | | | | | graphical representation of electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | Ch on during | 4 | Mary | 6/4/20 | | electromagnetic wave. 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 1. | | | 4 | May | 6/4/20- | | 2. Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | Kanta | | | 10/5/20 | | in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | 2 | | Chandrama | 1 | Mov | 11/5/20 | | equations, velocity of electromagnetic waves in free space, Pointing vector. d) Solid State Physics | ∠. | - | | '1 | iviay | | | electromagnetic waves in free space, Pointing vector. d) Solid State Physics | | | Kanta | | | 13/3/40 | | Pointing vector. d) Solid State Physics | | = | | | | | | d) Solid State Physics | | - | | | | | | | | Tomang voctor. | | | | | | · · | d) | Solid State Physics | | | | | | 1. Crystanine and amorphous state of Utpala 10 1 | 1. | Crystalline and amorphous state of | Utpala | 10 | February | 6/2/20- | | TO TO EXEMPLE AND ADDITIONAL CORRECT TO THE TOTAL CORRESPONDENCE OF THE TOTAL CORRECT TO | d) | Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of electromagnetic waves in free space, Pointing vector. Solid State Physics | Kalita | | May | 11/5/20-
15/5/20 | | | substances, single crystal and | Baishya | | | 20/2/20 | |----|---|---------|---|-------|----------| | | polycrystalline substances, basis, | | | | | | | crystal lattice, unit cell, primitive | | | | | | | unit cell, translation vectors, lattice | | | | | | | parameters, directions, lattice planes, | | | | | | | Miller indices, inter-planar spacing | | | | | | 2. | Crystallographic axes, Crystal | Utpala | 4 | March | 1/3/20- | | | systems and Bravais lattice. | Baishya | | | 15/3/20 | | 3. | Different types of bonding in solids, | Utpala | 5 | March | 16/3/20- | | | ionic, covalent, metallic and | Baishya | | | 25/3/20 | | | hydrogen bonding. | _ | | | | | | | | | | | | 4. | Classical free electron theory of | Utpala | 2 | April | 1/4/20- | | | metals., | Baishya | | _ | 10/4/20 | ### **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 100 | | Course | BSc (Semester) | Paper no | 601 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|--------------------|-------|----------|--------------------| | 1 | To determine the value of g' by Kater's pendulum. | Utpala
Baishya | 8 | February | 1/2/20-
28/2/20 | | 2 | To determine the value of 'J', the mechanical equivalent of heat by Joule's calorimeter. | Utpala
Baishya | 6 | March | 1/3/20-
15/3/20 | | 3 | To determine the angle of minimum deviation and angle of the prism with the help of a spectrometer and hence find refractive index of the material of the prism. | Chandrama
Kaita | 8 | April | 1/4/20-
15/4/20 | | 4 | To assemble OR, AND and NOT | Jayanta Deka | 6 | March | 16/3/20- | |---|--------------------------------------|--------------|---|-------|----------| | | gates using diode and transistor and | | | | 31/3/20 | | | verify their tuth tables. | | | | | | 5 | To draw the characteristics of- (i) | Chandrama | 6 | April | 16/4/20- | | | a forward biased PN diode and (ii) | Kaita | | | 30/4/20 | | | reverse biased Zener diode and | | | | | | | hence determine the ac resistance of | | | | | | | the PN diode and breakdown | | | | | | | voltage of the Zener diode. | | | | | #### DEPARTMENT OF PHYSICS ### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | First semester | |------------|---------------------------|----------|----------------| | Subject | Mathematical
Physics I | Credit | 6 | | Course | | Paper No | PHY-HC-1016 | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted | Hours | Month | Date | |----------|-------------------------------------|----------|-------|-----------|-----------| | | | to | | | | | Unit I: | Revision: Properties of vectors | Dr. | 25 | August- | From | | Vector | under rotations. Scalar product | Utpala | | September | 1/8/2020 | | Calculus | and its invariance under rotations. | Baishya | | | to | | | Vector product, Scalar triple | | | | 10/9/2020 | | | product and their interpretation in | | | | | | | terms of area and volume | | | | | | | respectively. Scalar and Vector | | | | | | | fields. | | | | | | | Vector Differentiation: | | | | | | | Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities. Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs). | | | | | |--|---|--------------------------|----|-----------------------|--| | Unit II: First and Second order Differential Equations | First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. | Dr.
Utpala
Baishya | 17 | September | From
11/9/2020
to
29/9/2020 | | Unit III:
Orthogonal
Curvilinear
Coordinates | Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. | Dr.
Utpala
Baishya | 6 | September-
October | 30/9/2020
to
9/10/2020 | | Unit IV: Dirac Delta function and its Properties | Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function. Properties of Dirac delta function. | Dr.
Utpala
Baishya | 2 | October |
From
10/10/2020
to
14/10/2020 | | Unit V: | Independent random variables: | Dr. | 4 | October | From | | Introduction
to
Probability | Probability distribution functions; binomial, Gaussian and Poisson, with examples. Mean and variance. | Utpala
Baishya | | | 15/10/2020
to
20/10/2020 | |-----------------------------------|---|--------------------------|----|----------------------|---| | Unit VI:
Theory of
Errors | Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. Least-squares fit. | Dr.
Utpala
Baishya | 6 | October-
November | From/
21/10/
2020
to
10/11/2020 | | Lab | Introduction and Overview Computer architecture and organization, memory and Input/output devices. | Dr.
Utpala
Baishya | 30 | November | From
11/11/2020
to
25/11/2020 | | | Basics of scientific computing Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow- emphasize the importance of making equations in terms of dimensionless variables, Iterative methods Review of C & C++/Python/ | | | | | | | Matlab/ Mathematica Programming fundamentals Introduction to Programming, constants, variables and data | | | | | | | types, operators and Expressions I/O statements, scanf and printf, c in and c out, Manipulators for data formatting, Control statements (decision making and looping statements) (if statement. if-else Statement. Nested if | | | | | | | Structure. else-if Statement. Ternary Operator. goto Statement. switch Statement. Uncondi- tional and Conditional Looping. while Loop. do-while Loop. for Loop. | | | | | | Breakand continue | Statements. | | | |----------------------------------|-----------------|--|--| | Nested Loops), Arrays | (1D & 2D) | | | | and strings, user | | | | | | | | | | functions, Structures a | · | | | | Idea of classes and obje | ects. | | | | Programs | | | | | Sum & average of | a list of | | | | numbers, largest of a g | given list of | | | | numbers and its local | | | | | list, sorting of nu | | | | | ascending descending | | | | | | ig order, | | | | Binary search. | | | | | | | | | | Random number | _ | | | | Area of circle, area | of square, | | | | volume of sphere, value | e of pi (π) | Solution of Algeb | | | | | Transcendental e | equations | | | | by Newton | Raphson | | | | methods | | | | | Solution of lin | ear and | | | | quadratic equation | solving | | | | $\alpha = tan\alpha, I = I_0(st$ | | | | | | | | | | optics | | | | | T., 1., 1 | NT. | | | | Interpolation by | | | | | Gregory Forwar | | | | | Backward differenc | e formula | | | | | | | | | Evaluation of trig | onometric | | | | functions e.g. $\sin \theta$, | | | | | etc. | , | | | | | ntegration | | | | (Trapezoidal and | _ | | | | | Simpson | | | | rules), Monte Carlo | | | | | Given Position with | - | | | | time data to calculate | - | | | | and acceleration and | vice versa. | | | | Find the area | of B-H | | | | Hysteresis loop | | | | | 1 - | Ordinary | | | | Solution of | | | | | Differential Equations (ODE) First order Differential equation Euler, modifted Euler and Runge-Kutta (RK) second and fourth order methods First order differential equation | | |---|--| | (a) Radioactive decay (b) Newton's law of cooling. | | | Department | Physics | Semester | First semester | |------------|-----------|----------|----------------| | Subject | Mechanics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HC-1026 | | | | | | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted to | Hours | Month | Date | |---------------|------------------------------|-------------|-------|--------|-----------| | Unit I: | Reference frames. Inertial | Dr. | 6 | August | From | | Fundamentals | frames; Review of Newton's | Chandrama | | | 1/8/2020 | | of Dynamics | Laws of Motion. Galilean | Kalita | | | to | | | transformations; Galilean | | | | 11/8/2020 | | | invariance. Momentum of | | | | | | | variable mass system: | | | | | | | motion of rocket. Motion of | | | | | | | a projectile in Uniform | | | | | | | gravitational field Dynamics | | | | | | | of a system of particles. | | | | | | | Centre of Mass. Principle of | | | | | | | conservation of momentum. | | | | | | | Impulse. | Unit II: Work | Work and Kinetic Energy | Mr. | 4 | August | From | | and Energy | Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non-conservative forces. Law of conservation of Energy. | Jayanta
Deka | | | 12/8/2020
to
18/8/2020 | |------------------------------------|--|----------------------------|----|----------------------------|--------------------------------------| | Unit III:
Collisions | Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames. | Dr.
Chandrama
Kalita | 3 | August | From
19/8/2020
to
26/8/2020 | | Unit IV:
Rotational
Dynamics | Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation. | Mr.
Jayanta
Deka | 12 | August
and
September | From 27/8/2020 to 14/9/2020 | | Unit V:
Elasticity | Relation between Elastic constants. Twisting torque on a Cylinder or Wire. Cantilever. | Dr.
Chandrama
Kalita | 3 | September | From
15/9/2020
to
22/9/2020 | | Unit VI:
Fluid Motion | Kinematics of Moving
Fluids: Poiseuille's Equation
for Flow of a Liquid through
a Capillary Tube. | Dr.
Chandrama
Kalita | 2 | September | From 23/9/2020 to 28/9/2020 | | Unit VII: | Law of gravitation. | Dr. | 8 | September | From | | Gravitation
and Central
Force Motion | Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. | Chandrama
Kalita | | and
October | 29/9/2020
to
12/10/2020 | |---|---|----------------------------|----|----------------------------|--| | Unit VIII:
Oscillations | SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. Compound Pendulum. | Dr.
Chandrama
Kalita | 8 | October
and
November | From
13/10/2020
to
3/11/2020 | | Unit IX:
Non-Inertial
Systems | Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. | | 4 | November | From
4/11/2020
to
9/11/2020 | | Unit X:
Special
Theory of
Relativity | Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic | Mr.
Jayanta
Deka | 10 | November | From
10/11/2020
to
20/11/2020 | | | transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum. | | | | | |-----|--|---|----|-----------------------|------------------------------| | Lab | A minimum of seven
experiments to be done. 11. Measurements of length (or diameter) using vernier caliper, screw gauge, Spherometer and travelling microscope. 12. To study the Motion of Spring and calculate (a) Spring constant and (b) Rigidity modulus. 13. To determine the Moment of Inertia of a cylinder about two different axes of symmetry by torsional oscillation method. 14. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method). 15. To determine the Young's Modulus of the material of a wire by Searle's apparatus. 16. To determine the Modulus of Rigidity of a Wire Static | Dr. Chandrama Kalita and Mr. Jayanta Deka | 15 | November and December | From 21/11/2020 to 7/12/2020 | | method. | | | |------------------------|--|--| | 17. To determine the | | | | value of g using Bar | | | | Pendulum. | | | | 18. To determine the | | | | value of g using | | | | Kater's Pendulum. | | | | 19. To determine the | | | | height of a building | | | | using a Sextant. | | | | 20. To determine g and | | | | velocity for a freely | | | | falling body using | | | | Digital Timing | | | | Technique | | | | Department | Physics | Semester | First semester | |------------|-----------|----------|----------------| | Subject | Mechanics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HG/RC-1016 | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted to | Hours | Month | Date | |----------|-------------------------------|-------------|-------|--------|-----------| | Unit I: | Vector algebra. Scalar and | Dr. Utpala | 6 | August | From | | Vectors | vector products. Derivatives | Baishya | | | 1/8/2020 | | | of a vector with respect to a | | | | to | | | parameter. Ordinary | | | | 10/8/2020 | | | Differential Equations: 1st | | | | | | | order homogeneous | | | | | | | differential equations. 2nd | | | | | | | order homogeneous | | | | | | | differential equations with | | | | | | | constant coefficients | | | | | | Unit II: | Frames of reference. | Mr. Jayanta | 10 | August | From | | Laws of | Newton's Laws of motion. | Deka | | | 11/8/2020 | | Motion | Dynamics of a system of particles. Centre of Mass. | | | | to
24/8/2020 | |-------------------------------------|---|----------------------------|---|----------------------------|---------------------------------------| | Unit III:
Momentum
and Energy | Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. | Dr.
Chandrama
Kalita | 6 | August
and
September | From 26/8/2020 to 2/9/2020 | | Unit IV :
Rotational
Motion | Angular velocity and angular momentum. Torque. Conservation of angular momentum | Dr.
Chandrama
Kalita | 5 | September | From 3/9/2020 to 10/9/2020 | | Unit V :
Gravitation | Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). | Mr. Jayanta
Deka | 7 | September | From
11/9/2020
to
21/9/2020 | | Unit VI :
Oscillations | Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. Compound pendulum. | Mr. Jayanta
Deka | 7 | September | From 22/9/2020 to 30/9/2020 | | Unit VII :
Elasticity | Hooke's law - Stress-strain diagram – Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants – Work done in stretching and work done in twisting a wire – Twisting couple on a cylinder – Determination of Rigidity modulus by static torsion - Torsional | Dr.
Chandrama
Kalita | 8 | October | From
1/10/2020
to
12/10/2020 | | | pendulum-Determination of Rigidity modulus and moment of inertia – q , η and σ by Searles method. | | | | | |--|---|---|----|----------------------------|---------------------------------------| | Unit VIII:
Special
Theory of
Relativity | Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities. | Dr. Utpala
Baishya | 7 | October
and
November | From
13/10/2020
to
2/11/2020 | | Lab | A minimum of five experiments to be done. 9. Measurements of length (or diameter) using vernier caliper, screw gauge and Spherometer. 10. To determine the Moment of Inertia of a Symmetrical body about an axis by torsional oscillation method. 11. To determine the Young's Modulus of the material of a wire by Searle's apparatus. 12. To determine the Modulus of Rigidity of a Wire Static method. 13. To determine the elastic Constants of a wire by Searle's method. 14. To determine the value of g using Bar Pendulum. 15. To determine the value of g using Kater's Pendulum. 16. To study the Motion of Spring and calculate (a) Spring | Dr. Chandrama Kalita and Mr. Jayanta Deka | 16 | November | From 3/11/2020 to 25/11/2020 | | constant and (b) value | | | |------------------------|--|--| | of g. | | | | | | | | Department | Physics | Semester | Third semester | |------------|----------------------------|----------|----------------| | Subject | Mathematical
Physics II | Credit | 6 | | Course | | Paper No | PHY-HC-3016 | | Remarks | | Marks | 100 | | Unit | Course conent | Allotted | Hours | Month | Date | |---|--|--------------------------|-------|----------------------------|---------------------------| | | | to | | | | | Unit I:
Frobenius
Method
and
Special
Functions | Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. | Dr.
Utpala
Baishya | 18 | August | From 1/08/20 to 24/08/20 | | Unit II:
Partial
Differential
Equations | Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular membranes. Diffusion Equation. | Dr.
Utpala
Baishya | 14 | August
and
September | From 25/08/20 to 10/09/20 | | Unit III:
Some
Special
Integrals | Beta and Gamma Functions and
Relation between them. Expression
of Integrals in terms of Gamma
Functions. | Dr.
Utpala
Baishya | 4 | September | From
11/09/20
to
16/09/20 | |---|--|--------------------------|----|-----------------------------|------------------------------------| | Unit IV:
Matrix | Matrix algebra using index notation, Properties of matrices, Special matrix with their properties: Transpose matrix, complex conjugate matrix, Hermitian matrix, Anti-Hermitian matrix, special square matrix, unit matrix, diagonal matrix, co-factor matrix, adjoint of a matrix, self- adjoint matrix, symmetric matrix, anti-symmetric matrix, unitary matrix, orthogonal matrix, trace of a matrix, inverse matrix. Determinant, Rank, Eigen value, Eigen vector and diagonalisation of matrix. | | 15 | September
and
October | From
17/09/20
to
5/10/20 | | Unit V:
Fourier
Series | Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coeffcients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Application to square and triangular waves. | Dr.
Utpala
Baishya | 9 | October | From 6/10/20 to 15/10/20 | | Lab | The aim of this Lab is to use the computational methods to solve physical problems. Course will consist of lectures (both theory and
practical) in the Lab. Evaluation done not on the programming but on the basis of formulating the problem. Introduction to Numerical computation softwares Introduction to Scilab/Mathematica/Matlab/Python, Advantages and disadvantages, Scilab | Dr.
Utpala
Baishya | 15 | October
and
November | From
16/10/20
to
20/11/20 | | / Mathematica / Matlab/ Python | | | |---------------------------------------|--|--| | environment, Command window, | | | | Figure window, Edit window, | | | | Variables and arrays, Initialising | | | | variables in Scilab / Mathematica / | | | | Matlab/ Python, Multidimensional | | | | ar- rays, Subarray, Special values, | | | | Displaying output data, data file, | | | | Scalar and array operations, | | | | Hierarchy of operations, Built in | | | | Scilab / Mathematica / | | | | Matlab/Python functions, | | | | Introduction to plotting, 2D and 3D | | | | plotting. | | | | Curve fttting, Least square fit, | | | | Goodness of fit, standard | | | | deviation Ohms law to calculate | | | | R, Hooke's law to calculate | | | | spring constant. | | | | Solution of Linear system of | | | | equations Solution of Linear | | | | system of equations by Gauss | | | | elimination method and Gauss | | | | Seidal method. Diagonalisation of | | | | matrices, Inverse of a matrix, Eigen | | | | vectors, eigenvalues prob- lems. | | | | Solution of mesh equations of | | | | electric circuits (3 meshes) Solution | | | | of coupled spring mass systems (3 | | | | masses). | | | | Generation of Special functions | | | | Generation of Special functions | | | | using User defined functions in | | | | Scilab / Math- ematica / Matlab. | | | | Generating and plotting Legendre | | | | Polynomials Generating and | | | | plotting Hermite function. | | | | First order ODE Solution of first | | | | order Differential equation Euler, | | | | modified Euler and Runge-Kutta | | | | second order methods. First order | | | | differential equation (a) Current in | | | | RC, LC circuits with DC source (b) | | | | Classical equations of motion. | | | | Second order ODE Second order | | | | differential equation. Fixed | | | | difference method. Second order | | | |---------------------------------------|--|--| | Differential Equation | | | | Harmonic oscillator (no friction) (b) | | | | Damped Harmonic oscillator (c) | | | | Over damped (d) Critical damped. | | | | Partial Differential Equation (PDE) | | | | Solution of Partial Differential | | | | Equation: (a) Wave equation (b) | | | | Heat equation. | | | | - | | | | Department | Physics | Semester | Third semester | |------------|-----------------|----------|----------------| | Subject | Thermal Physics | Credit | 6 | | Course | | Paper No | PHY-HC-3026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--------------|--|-------------|-------|--------|-------------| | Unit I: | Extensive and intensive | Dr. | 8 | August | From | | Zeroth | Thermodynamic Variables, | Chandrama | | | 1/08/20 | | and
First | Thermodynamic Equilibrium, | Kalita | | | to 11/08/20 | | Law of | Zeroth Law of | | | | 11/06/20 | | Thermod | Thermodynamics & Concept | | | | | | ynamics | of Temperature, Concept of | | | | | | | Work & Heat, State | | | | | | | Functions, First Law of | | | | | | | Thermodynamics and its | | | | | | | differential form, Internal | | | | | | | Energy, First Law & various | | | | | | | processes, Applications of | | | | | | | First Law: General Relation | | | | | | | between C _P and C _V , Work | | | | | | | Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient. | | | | | |--|---|----------------------------|----|----------------------------|------------------------------------| | Unit II:
Second
Law of
Thermod
ynamics | Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & effciency. Refrigerator & coeffcient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. | Dr.
Chandrama
Kalita | 10 | August | From
12/08/20
to
24/08/20 | | Unit III: Entropy | Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Entropy Changes in Reversible and Irreversible processes. Principle of | Dr.
Chandrama
Kalita | 7 | August
and
September | From 25/08/20 to 3/09/20 | | | Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero. | | | | | |---|--|----------------------------|---|-----------------------------|------------------------------------| | Unit IV:
Thermod
ynamic
Potential
s | Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations. | Dr.
Chandrama
Kalita | 7 | September | From
4/09/20
To
15/09/20 | | Unit V: Maxwell 's Thermod ynamic Relation s | Derivations and applications of Maxwell's Relations; Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Values of C_p - C_v , (3) TdS Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. | Dr.
Chandrama
Kalita | 7 | September | From
16/09/20
to
23/09/20 | | Unit VI: Distribut ion of Velocitie | Maxwell-Boltzmann Law of
Distribution of Velocities in
an Ideal Gas and its | Dr.
Chandrama
Kalita | 7 | September
and
October | From 24/09/20 to 5/10/20 | | S | Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. | | | | | |--|--|----------------------------|----|----------------------------|-----------------------------------| | Unit VII:
Molecula
r
Collision
s | Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. | Dr.
Chandrama
Kalita | 4 | October | From 6/10/20 to 12/10/20 | | Unit
VIII:
Real
Gases | Behaviour of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. P-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule- Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule-Thomson Cooling. | Dr.
Chandrama
Kalita | 10 | October
and
November | From
13/10/20
to
4/11/20 | | Lab | To determine Mechanical Equivalent of Heat, J, by Callender and Barne's | Dr.
Chandrama
Kalita | 14 | November | From 5/11/20 to 28/11/20 | | constant flow method. | |---| | 2. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus. | | 3. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method. | | 4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method. | | 5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT). | | 6. To study the variation of Thermo-emf of a
Thermocouple with Difference of Temperature of its Two Junctions. | | 7. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral | | Temperature | | Department | Physics | Semester | Third semester | |------------|--------------------------------|----------|----------------| | Subject | Digital Systems & Applications | Credit | 6 | | Course | | Paper No | PHY-HC-3036 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|--|------------------------|-------|--------|----------------------------------| | Unit I:
Introduction
to CRO | Block Diagram of CRO. Electron Gun, Deflection System and Time Base. Deflection Sensitivity. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. | Mr.
Jayanta
Deka | 3 | August | From
1/08/20
to
5/08/20 | | Unit II: Integrated Circuits (qualitative treatment only) | Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs. | Mr.
Jayanta
Deka | 3 | August | From 6/08/20 to 10/08/20 | | Unit III:
Digital Circuits | Difference between Analog and Digital Circuits. Binary Numbers. Decimal to | Mr.
Jayanta
Deka | 6 | August | From
11/08/20
to | | | Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. | | | | 21/08/20 | |---|---|------------------------|---|----------------------------|-----------------------------------| | Unit IV:
Boolean
Algebra | De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. | Mr.
Jayanta
Deka | 6 | August | From 22/08/20 to 28/08/20 | | Unit V:
Data
Processing
Circuits | Basic idea of Multiplexers,
De-multiplexers, Decoders,
Encoders. | Mr.
Jayanta
Deka | 4 | August
and
September | From 29/08/20 to 3/09/20 | | Unit VI:
Arithmetic
Circuits | Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. | Mr.
Jayanta
Deka | 5 | September | From
4/09/20
to
10/09/20 | | Unit VII:
Sequential
Circuits | SR, D, and JK Flip-Flops.
Clocked (Level and Edge | Mr.
Jayanta
Deka | 6 | September | From
11/09/20
to | | | Triggered) Flip-Flops. Preset and Clear operations. Race- around conditions in JK Flip-Flop. M/S JK Flip-Flop. | | | | 17/09/20 | |---|---|------------------------|---|-----------------------------|------------------------------------| | Unit VIII:
Timers: | Block diagram and applications: Astable multivibrator and Monostable multivibrator. | Mr.
Jayanta
Deka | 3 | September | From
18/09/20
to
30/09/20 | | Unit IX:
Shift
Registers | Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). | Mr.
Jayanta
Deka | 2 | October | From 1/10/20 to 5/10/20 | | Unit X:
Counters | Ring Counter, Asynchronous counters, Decade Counter. Synchronous Counter. | Mr.
Jayanta
Deka | 4 | October | From 6/10/20 to 12/10/20 | | Unit XI:
Computer
Organization | Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. | Mr.
Jayanta
Deka | 6 | October | From
13/10/20
to
19/10/20 | | Unit XII:
Intel 8085
Microproces
sor
Architecture | Main features of 8085. Block diagram. Components. Pin-out diagram. Buses. Registers. ALU. Memory. Stack memory. Timing & Control circuitry. | Mr.
Jayanta
Deka | 8 | October
and
November | From 20/10/20 to 6/11/20 | | Unit XIII:
Introduction
to Assembly
Language | 1 byte, 2 byte, & 3 byte instructions. | Mr.
Jayanta
Deka | 4 | November
and
December | From 7/11/20 to 16/11/20 | | Lab | A minimum of eight | Mr. | 16 | From | |-----|---|---------|----|----------| | | experiments to be done. | Jayanta | | 17/11/20 | | | 1. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. | Deka | | 5/12/20 | | | 2. To test a Diode and Transistor using a Multimeter. | | | | | | 3. To design a switch (NOT gate) using a transistor. | | | | | | 4. To verify and design AND, OR, NOT and XOR gates using NAND gates. | | | | | | 5. To design a combinational logic system for a specified Truth Table. | | | | | | 6. To convert a Boolean expression into logic circuit and design it using logic gate ICs. | | | | | | 7. Half Adder, Full Adder and 4-bit binary Adder. | | | | | | 8. Half Subtractor, Full
Subtractor, Adder-
Subtractor using Full
Adder IC. | | | | | | 9. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. | | | | | | 10. To build JK Master-
slave flip-flop using
Flip-Flop ICs . | | | | | | 11. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study | | | | |
 |
 | |--|------| | timing diagram. | | | 12. To make a 4-bit Shift Register (serial and parallel) using D- type/JK Flip-Flop ICs. | | | 13. To design an astable multivibrator of given specifications using 555 Timer. | | | 14. To design a monostable multivibrator of given specifications using 555 Timer. | | | 15. Write the following programs using 8085 Microprocessor | | | (a) Addition and subtraction of numbers using direct addressingmode | | | (b) Addition and subtraction of numbers using indirect addressin gmode | | | (c) Multiplication by repeated addition | | | (d) Division by repeated subtraction | | | (e) Handling of 16-bit
Numbers | | | (f) Use of CALL and
RETURN Instruction
(g) Block data
handling | | | Department | Physics | Semester | Third semester | |------------|---|----------|----------------| | Subject | Thermal Physics & Statistical Mechanics | Credit | 6 | | Course | | Paper No | PHY-HG/RC-3016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hour | Month | Date | |-----------------|-----------------------------|-------------|------|--------|-----------| | | | | S | | | | Unit I: Laws of | Thermodynamic Description | Mr. | 22 | August | From | | Thermodynamic | of system: Zeroth Law of | Jayanta | | | 1/8/20 to | | S | thermodynamics and | Deka | | | 28/8/20 | | | temperature. First law and | | | | | | | internal energy, conversion | | | | | | | of heat into work, Various | | | | | | | Thermodynamical Processes, | | | | | | | Applications of First Law: | | | | | | | General Relation between | | | | | | | CP & CV , Work Done | | | | | | | during Isothermal and | | | | | | | Adiabatic Processes, | | | | | | | Compressibility & | | | | | | | Expansion Coefficient, | | | | | | | Reversible & irreversible | | | | | | | processes, Second law & | | | | | | | Entropy, Carnot's cycle & | | | | | | | theorem, Entropy changes in | | | | | | | reversible & irreversible | | | | | | | processes, Entropy- | | | | | | | temperature diagrams, Third | | | | | | | law of thermodynamics, | | | | | | | Unattainability of absolute | | | | | | | zero. | | | | | | | | | | | | | Unit II: | Enthalpy, Gibbs, Helmholtz | Dr. Utpala | 10 | August | From | | Thermodynamic Potentials | and Internal Energy functions, Maxwell's relations & applications - Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP — Cv), C _P /C _V , TdS equations. | Baishya | | and
Septemb
er | 29/8/20
to
14/9/20 | |--|--|-----------------------------|----|--------------------------------|----------------------------------| | Unit III :
Kinetic Theory
of Gases | Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. | Dr. Utpala
Baishya | 10 | Septemb | From
15/9/20
to
29/9/20 | | Unit IV:
Theory of
Radiation | Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of
Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law. | Dr.
Chandram
a Kalita | 6 | Septemb
er and
October | From 30/9/20 to 6/10/20 | | Unit V:
Statistical
Mechanics | Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - dis- tribution of velocity – Quantum statistics – Fermi-Dirac distribution law – electron gas – Bose-Einstein distribution law – photon gas – comparison of three statistics. | Dr.
Chandram
a Kalita | 12 | October
and
Novemb
er | From 7/10/20 to 2/11/20 | | Lab | 1. To determine Mechanical Equivalent of Heat, J, by Callender and | Dr.
Chandram
a Kalita, | 20 | Novemb
er | From 3/11/20 to 28/11/20 | |-----|---|------------------------------|----|--------------|--------------------------| | | Barne's constant flow method. | Dr. Utpala
Baishya , | | | 20/11/20 | | | Measurement of
Planck's constant
using black body
radiation. | Mr.
Jayanta
Deka | | | | | | 3. To determine Stefan's Constant. | | | | | | | 4. To determine the coefficient of thermal conductivity of copper by Searle's Apparatus. | | | | | | | 5. To determine the
Coefficient of
Thermal
Conductivity of Cu
by Angstrom's
Method. | | | | | | | 6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method. | | | | | | | 7. To determine the temperature coefficient of resistance by Platinum resistance thermometer. | | | | | | | 8. To study the variation of thermo emf across two junctions of a thermocouple with temperature. | | | | | | _ | 1 |
 | | |---|--|------|---| | | 9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system. 10. To calibrate Resistance Temperature Device (RTD) | | | | | Resistance
Temperature | | | | | | | 1 | | Department | Physics | Semester | Third semester | |------------|---------------------|----------|----------------| | Subject | Digital Photography | Credit | 4 | | | & Editing | | | | Course | | Paper No | PHY-SE-3044 | | | | | | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|---|----------------------------|-------|-----------------------------|-----------------------------------| | Unit I:
Theory of
Basic
Photography | History of Photography, Introduction to Digital Photography, Digital Camera, dSLR, Advantages and Disadvantages of Digital Photography | Mr.
Jayanta
Deka | 2 | August | From
1/8/20
to
17/8/20 | | Unit II: The
Camera-
Components
and
Concepts | Lens, Focal Length, Lens type,
Aperture, Depth of Field,
Shutter, Shutter Speed, Image
sensor, Memory cards, External
Flash, File types | Dr.
Chandrama
Kalita | 2 | August | From
18/8/20
to
28/8/20 | | Unit III:
Capturing
an Image,
Hands-on
Basics | Elements of Composition: Pattern, Symmetry, Texture, Depth of Field, Lines; Law of Thirds, Camera Shake, Red eye, Lighting, Digital Noise | Dr.
Chandrama
Kalita | 3 | August
and
September | From 29/8/20 to 14/9/20 | | Unit IV:
Exposure
Modes | Automatic mode, Manual mode, aperture mode, shutter mode, Scene mode, Portrait mode, landscape mode, close upmode, | Dr.
Chandrama
Kalita | 5 | September
and
October | From
15/9/20
to
19/10/20 | | | sports mode, Twilight
mode, Night Mode, Black
and white, sepia,
Panoramic mode. | | | | | |--|--|------------------------|---|----------------------------|------------------------------------| | Unit V:
Conditions
in Digital
Photography | Lighting, Importance of Natural Light, Best Time of Day to Take Photos, Disable Flash Indoors, Disable Flash in Low Light, Use Flash to Balance Bright Light, Get Closer to the Subject, Crop Your Photo, Choose Better Backgrounds, Pick Proper Orientation, Use Point of View, Frame your Subject, Experiment with Abstract Photography, Holding your DSLR | Dr. Utpala
Baishya | 7 | October
and
November | From 20/10/20 to 12/11/20 | | Unit VI:
Digital
Videography | Various Parts, Contrl and Features of Video Camera, Types of daylight applications, Three points lighting- (a) The key light, (b) The fill light and the back light, (c) Bounce and diffuse light, Framing and shots, Camera angle and camera movements | Dr. Utpala
Baishya | 4 | November | From
13/11/20
to
17/11/20 | | Unit VII:
Post
Production | The Digital Workflow: Capturing the Image, Storing the Photo, Cataloging the Image Files, Editing the Photo, Sharing, Archiving and Backing Up the Photograph | Mr.
Jayanta
Deka | 7 | November | From 18/11/20 to 28/11/20 | ## **Department Physics** ## SBMS COLLEGE, SUALKUCHI Session: 2020-2021 | Department | Physics | Semester | 5 th | |------------|----------------|----------|-----------------| | | | | (Major)(Theory) | | Subject | Physics | Marks | 60 | | Course | BSC (Semester) | Paper no | 501 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--------------------------------|-------------|-------|-----------|------------| | a) | MATHEMATICAL
METHODS V | | | | | | | METHODS-V: | | _ | | | | 1 | Algebraic operation, Argand | Utpala | 5 | August | 2/8/20 | | | diagram, vector | Baishya | | | То | | | representation, complex | | | | 12/8/20 | | | coniuures Euler's formula, | | | | | | | De-Moiver's theorem. | | | | | | 2 | Analytic function of a | Utpala | 13 | August | 13/8/20 | | | complex variable, Derivative | Baishya | | | to 24/8/20 | | | of F(z) and its analyticity, | | | | | | | contour integrals, equivalent | | | | | | | contours, Cauchy integral | | | | | | | theorem, differentiation | | | | | | | under integral sign. | | | | | | 3 | 5 5 | I Itmala | 12 | August | 25/8/20 | | 3 | Series expansion: Taylor and | Utpala | 12 | August- | | | | Laurent series and their | Baishya | | September | to 30/9 | | | simple applications | | | | /20 | | | Residues, Zeros, isolated | | | | | | | singular points, evaluation of | | | | | | | residues. Evaluation of | | | | | | | definite intragrals. | | | | | | b) | CLASSICAL
MECHANICS: | | | | | |----|---|---------------------|----|-----------|------------------------| | 1 | MECHANICS: Central force motion, two body central force motion, two body motion as a one body problem, general properties of central force motion, Energy and momenturn as constants of motion in central force, Energy equation involving only the radial motion, energy diagram and nature | Chandrama
Kalita | 8 | August | 2/8/20
to12/8/20 | | 2 | of orbits. Application of central force problem to motion under inverse square force field. solution of the equation of the path to find the nature of the orbits as hyperbolic, parabolic and elliptic. | Chandrama
Kalita | 8 | August | 13/8/20 to
24/8/20 | | 3 | Constraints, generalized coordinates, principle of virtual work. D' Alembert's principle and Lagrange's equations of motion, simple applications of Lagrangian formulations (i) Atwood machine (ii) simple pendulum (iii) Keplerian motion (iv) bead sliding on rotating wire. (v)compound pendulum, (vi)linear harmonic oscillator Hamilton's principle, calculus of variation, shortest distance between two points as example, Lagrange's equations from Hamilton's principle, | Chandrama
Kalita | 14 | September | 25/8/20 to
30/9 /20 | | Hamiltonian of a system, | | | |------------------------------|--|--| | Hamilton's canonical | | | | equations of motion, | | | | applications of Hamilton's | | | | equations to simple problems | | | | like simple pendulum, | | | | Kepler's problem., Poisson | | | | brackets. | | | ### **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major | |------------|----------------|----------|------------------------| | | | | Theory) | | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 502 | | Unit | Course Content | Allotted | Hours | Month | date | |------|-------------------------------|----------|-------|-----------|-----------| | | | to | | | | | 1 | Positive rays and their | Utpala | 10 | August | 2/8/20 to | | | analysis: Thomson's mass | Baishya | | | 15/8/20 | | | parabola method, Aston's mass | | | | | | | spectrograph, Bainbridge mass | | | | | | | spectrograph. | | | | | | 2 | Rutherford's nuclear atom | Utpala | 8 | August | 16/8/20to | | | model, alpha scattering expt, | Baishya | | | 31/8/20 | | |
deduction of the scattering | | | | | | | formula. | | | | | | 3 | Atomic spectra: Bohr's theory | Utpala | 12 | September | 1/9/20 to | | | of hydrogen spectra, energy | Baishya | | _ | 31/9/20 | | | level diagram, Ritz | | | | | | | combination principle, | | | | | | | resonance, excitation, critical and ionization potentials; fine structures of the spectral lines, Sommerfeld's extension of the Bohr's theory. | | | | | |---|--|-------------------|----|----------|------------------------| | 4 | Vector stom model: Spectra of alkali stoms, Bohr magneton; spinning electron; quantum numbers; Pauli's exclusion principle; explanation of the periodic classification of the clements; spectroscopic notations, source of radiation in external fieldsnormal Zeeman effect; anomalous Zeeman effect, Paschen-Back effect, Stark effect, Stern-Garlach experiment. | Utpala
Baishya | 15 | October | 1/10/20 to
31/10/20 | | 5 | X-Rays: Continuous and
Characteristics X-rays,
Mosley's law, Compton effect | Utpala
Baishya | 8 | November | 1/11/20 to
15/11/20 | | 6 | Scattering of light: Rayleigh scattering formula; colour of the sky: polarisation of the scattered light; Raman effect, experimental study of Raman effect, quantum Raman effect, application of the effect. | Utpala
Baishya | 7 | November | 1/11/20 to
15/11/20 | ## **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 503 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--------------------------------|-------------|-------|--------|------------| | a) | <u>QUANTUM</u> | | | | | | | MECHANICS: | | | | | | 1. | Development of quantum | Jayanta | 5 | August | 2/8/20 to | | | mechanics in light of Black | Deka | | | 14/8/20 | | | body radiation, failure of | | | | | | | classical idea, Plank's | | | | | | | quantum hypothesis, | | | | | | | photoelectric effect and | | | | | | | Compton effect. | | | | | | 2. | Matter wave: Wave particle | Jayanta | 8 | August | 15/8/20 to | | | duality, de Broglie wave | Deka | | | 31/8/20 | | | associated with moving | | | | | | | particles-(i) non relativistic | | | | | | | and (ii) relativistic case, | | | | | | | verification of matter waves | | | | | | | by (i) Davisson Germer's | | | | | | | experiment and (ii) G.P. | | | | | | | Thomson's electron | | | | | |----|---|-----------------|----|-----------|----------------------| | 3. | diffraction experiment. Complimentary principle of Neils Bohr, Heisenberg's Uncertainty Principle, Gamma ray microscope experiment, application of | Jayanta
Deka | 7 | September | 1/9/20 to
15/9/20 | | 4. | Uncertainty Principle. Wave function and its probabilistic interpretation as probability amplitude; Continuity equation, probability density and probability current density J; Normalisation condition and normalised wave function; | Jayanta
Deka | 8 | September | 16/9/20 to 30/9/20 | | | properties of well behaved wave function in quantum mechanics. Wave packets, Superposition of waves, phase velocity and group velocity and their relation. | | 12 | | 1/10/20 | | 5. | Introduction to operator formalism, Dynamical variable as operator (position, momentum and Hamiltonian), Eigenvalues and eigenfunction; Expectation value, Ehrenfest's theorem. Schrodinger wave equation (i) time dependent and (ii) time independent Correspondence Principle. Application of Schrodinger's wave equation (i) one dimensional step potential (ii) one dimensional potential barrier, Reflection and | Jayanta
Deka | 12 | October | 1/10/20 to 20/10/20 | | | transmission coefficients and tunneling effect, (iii) a particle in a one dimensional potential well of infinite depth (iv) one dimensional harmonic oscillator.(v) Theory of hydrogen atomseparation of variables, radial solution. | | | | | |----|--|--------------------|---|-----------|-----------------------| | b) | ASTROPHYSICS: | | | | | | 1. | Astrophysical Co-ordinates: Celestial coordinate systems, The right Ascension. Declination and Altitude- Azimuth coordinate systems. The ecliptic and annual motion of the Sun across the thy the Signs of Zotine Identifications of the Constelationsecure and bright star. | Hirak
Choudhury | 5 | August | 2/8/20 to
14/8/20 | | 2. | Concept of time: Sidereal time and solar time; Greenwich Mean Time(GMT), standard time and local time; Julian date and its importance in astronomical observation. | Hirak
Choudhury | 5 | August | 15/8/20 to
31/8/20 | | 3 | Stellar Magnitude system and Distance measurement: The Stellar magnitude system and its relation with luminosity. Apparent and absolute magnitude and their relations with distances. Trigonometric and spectroscopic parallax to determine the distances. | Hirak
Choudhury | 5 | September | 1/9/20 to
15/9/20 | | | Difference magnitude | | | | | |----|---------------------------------|-----------|---|-----------|------------| | | systems. | | | | | | 4. | Spectral Classification and | Hirak | 5 | September | 16/9/20 to | | | H.R. Diagram: Spectral | Choudhury | | | 30/9/20 | | | classification, color index, H- | | | | | | | D classification. The H-R | | | | | | | Diagram. Steller evolution | | | | | | | and the evolutionary track of | | | | | | | a star. | | | | | ### **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major,
Theory) | |------------|----------------|----------|------------------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 504 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|--------|----------------------| | 1 | Volt-ampere relation of P-N junction diode (deduction not necessary), Energy band diagram of P-N diode, photo diode, LED, varactor diode and zener diode. Rectifiershalf wave and full wave with resistive load, efficiency, ripple factor, filters- series inductor, | Chandrama
Kalita | 8 | August | 2/8/20 to
16/8/20 | | | shunt capacitor, L-section
and I-section. Voltage
regulation and regulated
Power Supply. Clipping
and clamping circuits. | | | | | |---|---|---------------------|----|-----------|------------------------| | 2 | Thevenin, Norton and Millman theorem & maximum power transfer theorem. | Chandrama
Kalita | 6 | August | 17/82/20
to 31/8/20 | | 3 | Transistor, different mode of operations and characteristics of transistor, basic transistor amplifier, load line and operating point (Q point) of transistor, Stabilization of Q point, transistor biasing circuits, two port (four terminals) device and z, y and h parameters, h parameter equivalent circuit, analysis of transistor amplifier (CE) with h parameters, current gain, voltage gain and power gain, input and output impedance, Classification of amplifiers, Class A, Class B and Class C amplifiers, cascade amplifiers, small signal RC coupled amplifier (CE) and its voltage and current gain in low, mid and high frequency, frequency response curve, Phase relation between input and | Chandrama
Kalita | 14 | September | 1/9/20 to
15/9/20 | | | output, Power amplifiers, power dissipation, Harmonic distortion, large signal Push Pull Amplifier (Class B) | | | | | |---|---|---------------------|----|-----------------|---------------------| | 4 | Concept of feedback, different types of feedback, advantages of negative feedback in amplifier, Barkhousen criterion, classification of oscillators, tuned collector oscillator, Phase shift(R-C) and Wein bridge oscillator,
Multivibrators. | Chandrama
Kalita | 7 | September | 16/9/20 to 24/9/ 20 | | 5 | Direct Coupled Amplifier, differential amplifier, introduction to IC. OPAM, characteristics of an ideal OPAM, common and differential mode, CMMR, inverting, non-inverting mode of OPAM, OPAM as scale changer, adder, subtractor, differentiator and integrator. | Chandrama
Kalita | 6 | September | 25/9/20 to 30/9/20 | | 6 | Modulation, need of modulation, Theories of AM and FM, side-bands, power content in different parts of the modulated wave, band width of AM and FM, modulators, amplitude, modulation circuits, circuit of square band-widulation and detection, SSB transmission, AM Transmitter (block diagrams), super | Chandrama
Kalita | 12 | October20/10/24 | 1/10/20 to 20/10/20 | | | | | I | | | , | |---|---|----------------------------|-----------|---|--------|----------| | | | heterodyne receiver (block | | | | | | | | diagraenic Introduction to | | | | | | | | radio wave propagation, | | | | | | | | ground or surface wave, | | | | | | | | space or tropospheric wave | | | | | | | | and sky wave. Working | | | | | | | | and uses of CRO, | | | | | | | | Introductory idea of | | | | | | | | microprocesser . | | | | | | 7 | ' | Binary Number System, | Chandrama | 7 | Ocober | 21/10/20 | | | | Decimal to binary | Kalita | | | to | | | | conversion, Binary to | | | | 30/10/20 | | | | decimal conversion, | | | | | | | | Binary addition and | | | | | | | | subtraction. OR, AND, | | | | | | | | NOT, NOR and NAND | | | | | | | | Logic gates using P- N | | | | | | | | junction diode and | | | | | | | | transistors, Boolean | | | | | | | | Algebra, De Morgan's | | | | | | | | Theorem, Sequential | | | | | | | | circuits, Latch, RS, JK, | | | | | | | | MSJK, D and T flip flops. | | | | | | | | Introduction to binary | | | | | | | | transmission ASK, FSK | | | | | | | | and PSK. | ### **Department of Physics** ### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major | |------------|----------------|----------|------------------------| | | | | Practical) | | Subject | Physics | Marks | 75 | | Course | BSC (Semester) | Paper no | 505 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|-----------|------------------------| | 1 | To draw the characteristic curve of a photo cell and find the maximum velocity of the emitted electrons. | Chandrama
Kalita | 6 | August | 2/8/20
to15/8/20 | | 2 | To determine the value of Planck's constant with the help of photo cell a monochromatic filter | Jayanta
Deka | 6 | August | 16/8/20
to31/8/20 | | 3 | To determine the value of Stefan's constant by electrical method using an incandescent electric bulb. | Utpala
Baishya | 4 | September | 1/9/20
to15/9/20 | | 4 | To calibrate a spectrometer with spectral lines of known wavelength and hence determine unknown wavelength of spectral lines emitted by a given source | Chandrama
Kalita | 6 | September | 16/9/20
to30/9/20 | | 5 | To study the variation of refractive index of the material of a prism with known wavelengths of spectral lines of a source and | Chandrama
Kalita | 6 | October | 1/10/20 to
15/10/20 | | | hence determine the unknown wavelength of a spectral line emitted by a source. | | | | | |---|--|---------|---|---------|----------| | 6 | To determine he boiling | Utpala | 8 | October | 16/10/20 | | | point of the given liquid with | Baishya | | | to | | | the help of a Platinum | | | | 31/10/20 | | | Resistance thermometer. | | | | | ### **Department of Physics** ## SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 5 th (Major
Practical) | |------------|----------------|----------|--------------------------------------| | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 506 | | Unit | Course Content | Allotted | Hours | Month | date | |------|-------------------------------|----------|-------|-----------|------------| | | | to | | | | | 1 | To verify De Morgan's | Jayanta | 8 | September | 5/9/20 to | | | theorem using IC 7400 and | Deka | | | 25/9/20 | | | 7402. (Using Breadboard). | | | | | | | _ | | | | | | 2 | To assemble (a) OR, (b) AND, | Jayanta | 8 | October | 3/10/20 to | | | (c) NOT and (d) NAND gate | Deka | | | 31/10/20 | | | with resistance, diode and | | | | | | | transistors using bread board | | | | | | | and verify their truth table. | | | | | | | (Using Breadboard). | | | | | | 3 | To draw the forward bias | Jayanta | 8 | November | 1/11/20 to | | | characteristic of a | Deka | | | 15/11/20 | | | semiconductor diode and the | | | | | | reverse bias characteristic of a | | | |----------------------------------|--|--| | Zener diode and hence | | | | determine their DC and AC | | | | resistances. Also determine the | | | | breakdown voltage of the | | | | Zener diode (Using | | | | Breadboard). | | | ## **Department Physics** ## SBMS COLLEGE, SUALKUCHI **Session: 2020-2021** | Department | Physics | Semester | 5 th | |------------|----------------|----------|-------------------| | | | | (General)(Theory) | | Subject | Physics | Marks | 80 | | Course | BSc (Semester) | Paper no | 501 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|----------------------------|-------------|-------|--------|---------| | a) | Mathematical methods: | | | | | | 1. | Vector Algebra, scalar and | Utpala | 5 | August | 2/8/20- | | | vector product with | Baishya | | | 12/8/20 | | | illustration from physics, | | | | | | | vector triple products. | | | | | | 2. | Vector calculus: Scalar and Vector fields with example from physics, space curve, differentiation of a vector with respect to a scalar, gradient of scalar, divergence and curl of vector with example from physics. | Utpala
Baishya | 10 | August | 13/8/20-
31/8/20 | |----|--|---------------------|----|-----------|----------------------| | 3. | Line integral, surface integral and volume integral. Gauss's theorem, Stoke's and Green's theorem. | Utpala
Baishya | 5 | September | 1/9/20-
10/9/20 | | 4. | Curvilinear coordinate system, coordinate line and coordinate surface, unit normal vectors and unit tangent vectors, scale factor, orthogonal curvilinear coordinates, cylindrical polar and spherical polar coordinate systems. | Utpala
Baishya | 10 | October | 11/9/20-
30/10/20 | | b) | Atomic Physics: | | | | | | 1. | Positive rays: analysis of positive rays, Aston and Bainbridge mass spectrographs. | Chandrama
Kalita | 5 | August | 2/8/20-
12/8/20 | | 2. | Bohr's theory of hydrogen spectra, energy level diagram, Ritz combination principle, excitation, critical and ionization potentials, fine structures of the spectral lines, Sommerfeld's extension of the Bohr's theory(Qualitative only). | Chandrama
Kalita | 8 | September | 13/8/20-
31/8/20 | | 3. | Vector atom model, Bohr magnetron, spinning electron; quantum numbers; | Chandrama
Kalita | 8 | September | 13/8/20-
31/8/20 | | | Pauli's exclusion principle, source of radiation in external fields- normal Zeeman effect. | | | | | |----|--|---------------------|----|-----------|----------------------| | 4. | X-rays: origin and production of x-rays, continuous and characteristic X-rays, Mosley's law; diffraction of X-rays by crystals, Bragg's law, Compton Effect. | Chandrama
Kalita | 6 | October | 1/10/20-
31/10/20 | | 5. | Frank and Hertz experiment, matter wave, Davisson and Germer experiment. | Chandrama
Kalita | 6 | November | 1/11/20-
15/10/20 | | c) | Relativity: | | _ | | | | 1. | Michelson-Morley experiment, postulates of special theory of relativity, Lorentz transformation equations (derivation not necessary), time dilation, length contraction, mass variation, mass energy relation, veločity addition theorem. | Jayanta
Deka | 8 | August | 2/8/20-
12/8/20 | | d) | Renewable energy | | | | | | 1. | Need and importance, different renewable energy sources, solar energy, solar radiatant, instruments for measuring solvabliation, solar heaters (air and liquid), solar radiation concentrators (reflector elc.), solar cooker, photovoltaic effect, solar cells. | Jayanta
Deka | 10 | September | 13/8/20-
31/8/20 | ### **Department Physics** ## SBMS COLLEGE, SUALKUCHI Session: 2020-2021 | Department | Physics | Semester | 5 th (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 100 | | Course | BSc (Semester) | Paper no | 502 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|------------------------------|-------------|-------|-----------|----------| | 1 | To determine the value of | Utpala | 8 | August | 2/8/20- | | | 'H' with the help of a | Baishya | | _ | 31/8/20 | | | deflection and vibration | | | | | | | magnetometer. | | | | | | 2 | To determine the surface | Utpala | 8 | September | 1/9/20- | | | tension of a liquid by | Baishya | | | 31/9/20 | | | capillary rise method. | | | | | | 3 | To draw I-D curve for the | Chandrama | 8 | October | 1/10/20- | | | given prism with the help of | Kalita | | | 30/10/20 | | | a spectrometer and hence | | | | | | | find the angle of
minimum | | | | | | | deviation. | | | | | | 4 | To determine the | Chandrama | 8 | November | 1/11/20- | | | wavelength of sodium light | Kalita | | | 10/11/20 | | | by Newton's ring. | | | | | Session: 2020-21 (January -June) | Department | Physics | Semester | Second semester | |------------|-------------------------|----------|-----------------| | Subject | Electricity & Magnetism | Credit | 6 | | Course | | Paper No | PHY-HC-2016 | | Remarks | | Marks | 100 | | Unit | Course conent | Allotted to | Hours | Month | Date | |---|---|-----------------------------|-------|----------------------------|-------------------------| | Unit I: Electric Field and Electric Potential | Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Unique- ness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of | Dr.
Chandrama
Kalita, | 26 | January
and
February | From 20/1/21 to 23/2/21 | | | Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. | | | | | |--|--|------------------------------|---|--------------------------|----------------------------------| | Unit II:
Dielectric
Properties
of Matter
(Lectures | Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector $\bar{\mathbf{D}}^{\rightarrow}$. Relations between $\bar{\mathbf{E}}^{\rightarrow}$, $\bar{\mathbf{P}}^{\rightarrow}$ and $\bar{\mathbf{D}}^{\rightarrow}$ Gauss' Law in dielectrics. | Dr. Utpala
Baishya , | 8 | February
And
March | From 24/2/21 to 5/3/21 | | Unit III:
Magnetic
Field | Magnetic Force on a point charge, definition and properties of magnetic field B→. Curl and Divergence. Vector potential A→. Magnetic Force on (1) a current carrying wire (2) between current elements. Torque on a current loop in a uniform magnetic field. Biot-Savart's law and its simple application: straight wire and circular loop. Current loop as a magnetic dipole and its dipole moment (analogy with electric dipole) Ampere's circuital law and its application to (1) Solenoid (2) Torus. | Dr. Utpala
Baishya , | 9 | March | From 6/3/21 to 18/3/21 | | Unit IV:
Magnetic
Properties
of Matter | Magnetization vector ($\dot{\mathbf{M}}$).
Magnetic Intensity ($\dot{\mathbf{H}}$).
Magnetic Susceptibility and permeability. Relation between $\dot{\mathbf{B}}$, $\dot{\mathbf{H}}$, $\dot{\mathbf{M}}$. Ferromagnetism. | ,
Dr. Utpala
Baishya , | 4 | March | From
19/3/21
to
24/3/21 | | | B-H curve and hysteresis. | | | | | |---|---|-----------------------------|----|--------------------|----------------------------------| | Unit V:
Electroma
gnetic
Induction | Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current. | Mr. Jayanta
Deka | 6 | March
and April | From 25/3/21 to 5/4/21 | | Unit VI:
Electrical
Circuits | AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) 13 Quality Factor, and (4) Band Width. Parallel LCR Circuit. | Mr. Jayanta
Deka | 4 | April | From 6/4/21 to 12/4/21 | | Unit VII:
Network
Theorems | Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits. | Mr. Jayanta
Deka | 3 | April | From
13/4/21
to
20/4/21 | | Unit VIII:
Ballistic
Galvanom
eter | Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR. | Dr. Utpala
Baishya , | 3 | April | From 21/4/21 to 27/4/21 | | Lab | A minimum of seven experiments to be done. | Dr.
Chandrama
Kalita, | 14 | April and
May | From 28/4/21 to | | 16. Use a Multimeter for | | 25/5/21 | |--|-------------------------|---------| | measuring (a) Resistances, (b) AC and DC Voltages, (c) DC | Dr. Utpala
Baishya , | 2373721 | | Current, (d) Capacitances, and (e) Checking electrical fuses. | Mr. Jayanta
Deka | | | characteristics of a series RC Circuit. | 2 3.30 | | | 18. To determine an unknown Low Resistance using Potentiometer. | | | | 19. To determine an unknown Low Resistance using Carey Foster's Bridge. | | | | 20. To compare capacitances using De' Sauty's bridge. | | | | 21. Measurement of field strength B→ and its variation in a solenoid (determine dB). | | | | 22. To verify the Thevenin and Norton theorems. | | | | 23. To verify the Superposition, and Maximum power transfer theorems. | | | | 24. To determine self inductance of a coil by Anderson's bridge. | | | | of a Series LCR circuit and determine its (a) | | | | Resonant frequency, (b) | | | | Impedance at resonance, (c) Quality | | | | factor Q, and (d) Band width. | | | | 26. To study the response | | | | curve of a parallel LCR circuit and determine its | | | | (a) Anti- resonant frequency and (b) Quality factor Q. | |--| | 27. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. | | 28. Determine a high resistance by leakage method using Ballistic Galvanometer. | | 29. To determine self-inductance of a coil by Rayleigh's method. | | 30. To determine the mutual inductance of two coils by Absolute method. | Session: 2020-21 (January –June) | Department | Physics | Semester | Second semester | |------------|----------------|----------|-----------------| | Subject | Waves & Optics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HC-2026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---------------|-------------------------------|-------------|-------|---------|---------| | Unit I: | Linearity and Superposition | Dr. | 5 | January | From | | Superposition | Principle. Superposition of | Chandrama | | | 20/1/21 | | of Collinear | two collinear oscillations | Kalita, | | | to | | Harmonic | having (1) equal frequencies | | | | 28/1/21 | | Oscillations | and (2) different frequencies | | | | | | | (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences. | | | | | |--|--|-----------------------------|---|----------------------------|------------------------------| | Unit II:
Superposition
of Two
Perpendicular
Harmonic
Oscillations | Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses. | Dr.
Chandrama
Kalita, | 2 | January
And
February | From 29/1/21 to 1/2/21 | | Unit III: Wave Motion | Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. | Dr.
Chandrama
Kalita, | 4 | February | From 2/2/21 to8/2/21 | | Unit IV:
Velocity of
Waves | Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction. | Dr.
Chandrama
Kalita, | 6 | February | From 9/2/21 to17/2/21 | | Unit
V:
Superposition
of Two
Harmonic
Waves | Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. | Dr. Utpala
Baishya , | 7 | February
and
March | From
18/2/21
to 1/3/21 | | | Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. Superposition of N Harmonic Waves. | | | | | |---------------------------|---|------------------------------|---|-------|--------------------------| | Unit VI:
Wave Optics | Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. | ,
Dr. Utpala
Baishya , | 3 | March | From 2/3/21
To 8/3/21 | | Unit VII:
Interference | Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau | Dr. Utpala
Baishya , | 9 | March | From 9/3/21 to 22/3/21 | | | Fringes). Newton's Rings: Measurement of wavelength and refractive index. | | | | | |--------------------------------------|---|--------------------------|---|-----------------------|-------------------------| | Unit VIII:
Interferometer | Michelson Interferometer- (1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, (5) Visibility of fringes. Fabry-Perot interferometer. | Mr. Jayanta
Deka | 4 | March | From 23/3/21 to 30/3/21 | | Unit IX:
Diffraction | Fresnel and Fraunhofer diffraction. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel diffraction pattern of a straight edge and at a circular aperture . Resolving Power of a telescope. | ,
Mr. Jayanta
Deka | 9 | March
and
April | From 31/3/21 to 12/4/21 | | Unit X:
Fraunhofer
Diffraction | Single slit. Double slit. Multiple slits. Diffraction grating . Resolving power of grating. | Mr. Jayanta
Deka | 8 | April | From 13/4/21 to 28/4/21 | | Unit XI:
Holography | Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves. Point source holograms. | Mr. Jayanta
Deka | 3 | April
and May | From 29/4/21 to 5/5/21 | |------------------------|---|---|----|------------------|------------------------| | Lab | A minimum of seven experiments to be done. 1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ2 – T law. 2. To study Lissajous Figures. 3. Familiarization with: Schuster's focusing, determination of angle of prism. 4. To determine refractive index of the Material of a prism using sodium source. 5. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source. 6. To determine wavelength of sodium light using Fresnel Biprism. 7. To determine wavelength of sodium light using Newton's | Dr. Chandrama Kalita, Dr. Utpala Baishya , Mr. Jayanta Deka | 16 | May | From 6/5/21 to 25/5/21 | | Rings. | |----------------------------| | 8. To determine the | | thickness of a thin paper | | by measuring the width | | of the interference | | fringes produced by a | | wedge-shaped Film. | | 9. To determine | | wavelength of (1) Na | | source and (2) spectral | | lines of Hg source using | | plane diffraction grating. | | 10. To determine | | dispersive power and | | resolving power of a | | plane diffraction grating. | | | Session: 2020-21 (January –June) | Department | Physics | Semester | Second semester | |------------|-------------------------|----------|--------------------| | Subject | Electricity & Magnetism | Credit | 6 | | Course | | Paper No | PHY-HG/RC-
2016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |----------|------------------------------|-------------|-------|----------|---------| | Unit I: | Review of vector algebra | Dr. | 12 | January | From | | Vector | (Scalar and Vector product), | Chandrama | | and | 20/1/21 | | Analysis | gradient, divergence, Curl | Kalita, | | February | to | | | and their significance, | | | | 8/2/21 | | | Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). | | | | | |--------------------------|--|-----------------------------|----|--------------------------|------------------------| | Unit II : Electrostatics | Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem – Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. | , Dr. Utpala Baishya , | 22 | February
and
March | From 9/2/21 to 7/3/21 | | Unit III:
Magnetism | Magnetostatics: Biot-Savart's law & its applications — straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic | Dr.
Chandrama
Kalita, | 10 | March | From 8/3/21 to 22/3/21 | | | vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia, para, and ferro-magnetic materials. | | | | | |---|---|--|----|--------------------|-------------------------| | Unit IV:
Electromagne
tic Induction | Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field. | Mr. Jayanta
Deka | 6 | March
and April | From 23/3/21 to 5/4/21 | | Unit V: Maxwell's Equations and EM Wave | Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. | ,
Mr. Jayanta
Deka | 10 | April | From 6/4/21 to 19/4/21 | | Lab | 11. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses. 12. Ballistic Galvanometer (a) Measurement of charge and current sensitivity (b) Measurement of CDR | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr. Jayanta
Deka | 14 | April and
May | From 20/4/21 to 16/5/21 | | (c) Determine a high resistance by Leakage Method | | |--|--| | (d) To determine Self
Inductance of a Coil
by Rayleigh's
Method. | | | 13. To compare capacitances using De'Sauty's bridge. | | | 14. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx). | | |
15.To study the
Characteristics of a
Series RC Circuit. | | | series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor | | | 17.To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q. | | | 18. To determine a Low Resistance by Carey Foster's Bridge. | | | 19. To verify the Thevenin and Norton theorem. | | | 20. To verify the Superposition, and Maximum Power Transfer Theorem. | | Session: 2020-21 (January –June) | Department | Physics | Semester | Fourth semester | |------------|-----------------------------|----------|-----------------| | Subject | Mathematical
Physics III | Credit | 6 | | Course | | Paper No | PHY-HC-4016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|--|-------------------------|-------|----------------------------|----------------------------------| | Unit I:
Complex
Analysis | Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity. | Dr. Utpala
Baishya , | 10 | January
and
February | From 20/1/21 to 10/2/21 | | Unit II:
Comple
x
Integrati
on | Integration of a function of a complex variable. Cauchys Integral formula. Simply and multiply connected region. Laurent and Taylors expansion. Residues and Residue Theorem with numerical application. | Dr. Utpala
Baishya, | 10 | February | From
11/2/21
to
24/2/21 | | Unit III:
Fourier
Transfor
ms | Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier trans- form of trigonometric, Gaussian functions | Dr. Utpala
Baishya , | 15 | February
and
March | From 25/2/21 to 22/3/21 | | | Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem (Statement only). Properties of Fourier transforms (translation, change of scale, complex conjugation). | | | | | |---------------------------------------|---|-------------------------|----|--------------------|-------------------------| | Unit IV:
Laplace
Transfor
ms | Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem (Statement only). Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations: Damped Harmonic Oscillator. | Dr. Utpala
Baishya , | 15 | March
and April | From 23/3/21 to 12/4/21 | | Unit V:
Tensor
Algebra | Introduction to tensor, Transformation of co-ordinates, Einsteins summation convention. contravariant and co- variant tensor, tensorial character of physical quantities, symmetric and antisymmetric tensors, kronecker delta, Levi-Civita tensor. Quotient law of tensors, Raising and lowering of indices Rules for combination of tensors- addition, subtraction, outer multiplication, contraction and inner multiplications. | Dr. Utpala
Baishya , | 10 | April | From 13/4/21 to 28/4/21 | | Lab | Solve differential equations | Dr. Utpala | 15 | April and | From | |-----|---|------------|----|-----------|---------------| | | $\frac{dy}{dx} = e^x \text{ with } y = o \text{ and } x = 0$ | Baishya, | | May | 29/4/21
to | | | $\frac{dx}{dx}$ | | | | 25/5/21 | | | $\frac{dy}{dx} + e^{-x}y = x^2 \frac{d^2y}{dx^2} + 2\frac{dy}{dx}$ | | | | | | | $\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$ | | | | | | | , | | | | | | | $\frac{d^2y}{dx^2} + e^{-t}\frac{dy}{dx} = -y$ | | | | | | | $\frac{1}{dx^2} + e^{-x} \frac{1}{dx} = -y$ | | | | | | | | | | | | | | 2. Dirac Delta Function | | | | | | | Evaluate the integral <i>I</i> | | | | | | | _ | | | | | | | $\frac{1}{\sqrt{2\pi}a^2}\int exp\left[\frac{(x-2)^2}{2a^2}\right](x+3)dx$ | | | | | | | V2nu 5 [2w] | | | | | | | | | | | | | | 3. Fourier Series | | | | | | | Make a program to evaluate | | | | | | | a a | | | | | | | $\sum_{n=0}^{\infty} (0.2)^n$ | | | | | | | $\sum_{n=1}^{\infty} (0.2)$ | | | | | | | | | | | | | | Evaluate the Fourier | | | | | | | coefficients of a given periodic function (square wave) | | | |
| | | runction (square wave) | | | | | | | 4. Frobenius method and special | | | | | | | | | | | | | | Function evaluate | | | | | | | $\int_{-1}^{1} P_n(x) P_m(x) dx = d_{n,m}$ | | | | | | | J_{-1} | | | | | | | Plot $P_n(x)$, $jv(x)$ and show the | | | | | | | recursion relation | | | | | | | 5. Calculation of error for | | | | | | | each data point of | | | | | | | observations recorded in | | | | | | | experiments done in | | | | | | | previous semesters | | | | | | | (choose any two) | | | | | | | | | | | | | | 6. Calculation of least | | | | | | |
 | |--|------| | square fitting manually | | | without giving | | | weightage to error. | | | Confirmation of least | | | square fitting of data | | | through computer | | | program. | | | 7. Evaluation of | | | trigonometric | | | functions e.g. $\sin \theta$, | | | ,given | | | Bessel'sfunctionat N | | | points find its value | | | at an intermediate | | | point. | | | 8. Integrate | | | 1 | | | $\overline{(x^2+2)}$ | | | Numerically in a | | | given interval. | | | | | | 9. Compute the nth roots of unity | | | for n=2, 3, and 4. | | | 10. Find the two square roots of $5+12j$. | | | Integral transform | | | Evaluate FFT of | | | e^{-x^2} | | | 11. Solve Kirchoff's | | | current law for any | | | node of an arbitrary | | | circuit using | | | Laplace's transform. | | | 1 | | | | | | Department | Physics | Semester | Fourth semester | |------------|-------------------------------|----------|-----------------| | Subject | | Credit | 6 | | | Elements of Modern
Physics | | | | Course | | Paper No | PHY-HC-4026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|---------------------|-------|----------------------------|----------------------------------| | Unit I:
Quantum
Theory and
Blackbody
Radiation | Quantum theory of light; photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. group and phase velocities and relation between them. Two-slit experiment with electrons. Probability. wave amplitude and wave functions. | Mr. Jayanta
Deka | 12 | January
and
February | From 20/1/21 to 9/2/21 | | Unit II: Uncertainty and Wave- Particle Duality | Position measurement: gamma ray microscope thought experiment; wave- particle duality, Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of variables): Derivation from | Mr. Jayanta
Deka | 5 | February | From
10/2/21
to
17/2/21 | | | wave packets, impossibility of a particle following a trajectory; estimating minimum energy of a confined particle using uncertainty principle; energy-time uncertainty principle- application to virtual particles and range of an interaction. | | | | | |--|---|---------------------|---|------------------|------------------------| | Unit III:
Schrödinger
Equation | Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrödinger equation for non- relativistic particles; expectation value, momentum and energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; probability and probability current densities in one dimension. | Mr. Jayanta
Deka | 8 | February & March | From 18/2/21 to 1/3/21 | | Unit IV:
One-
dimensional
Box and
Step Barrier | One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; quantum dot as example; quantum mechanical scattering and tunnelling in one dimensionacross a step potential and | Mr. Jayanta
Deka | 9 | March | From 2/3/21 to 12/3/21 | | | rectangular potential barrier. | | | | | |---|---|---------------------|---|--------------------|----------------------------------| | Unit V:
Structure of
the Atomic
Nucleus | Size and structure of atomic nucleus and its relation with atomic weight; impossibility of an electron being in liquid drop model: semi-empirical mass formula and binding energy, nuclear shell model (qualitative discussions) and magic numbers. | Mr. Jayanta
Deka | 6 | March | From
13/3/21
to
22/3/21 | | Unit VI:
Radioactivity | Stability curve and stability of nuclei, Law of radioactive decay, disintegration constant, half life and mean life. Activity unit. Alpha decay – Range energy relation, Fine structure of alpha energy spectrum. Beta decay energy released, continuous beta spectrum and Pauli's prediction of neutrino. Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus. | Mr. Jayanta
Deka | 8 | March
and April | From 23/3/21 to 4/4/21 | | Unit VII:
Detection of
nuclear
radiation | Method of energy loss by charged particles and gamma photons. Photoelectric, Compton and Pairproduction processes Gas filled detectors – principle and construction of a gas filled detector, Ionization, proportional, GM and spark region. | Mr. Jayanta
Deka | 4 | April | From 5/4/21 to 12/4/21 | | Unit VIII:
Fission and
Fusion | Energy consideration in Nuclear Reaction, Q-value of nuclear reaction, Mass deficit, Einstein's mass-energy equivalence principle and generation of nuclear energy. Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235. Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions). | Mr. Jayanta
Deka | 4 | April | From
13/4/21
to
21/4/21 | |-------------------------------------|---|---------------------|----|-------|----------------------------------| | Unit IX:
Lasers | Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. Basic lasing. | Mr. Jayanta
Deka | 4 | April | From 22/4/21 to 30/4/21 | | Lab | A minimum of six experiments to be done. 1. Measurement of Planck's constant using black body radiation and photodetector. 2. Photo-electric effect Photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of | Mr. Jayanta
Deka | 16 | May | From 1/5/21 to 25/5/21 | | light. | | |--|--| | 3. To determine work function of material of filament of directly heated vacuum diode. | | | 4. To determine the Planck's constant using LEDs of at least 4 different colours. | | | 5. To determine the wavelength of $H-\alpha$ emission line of hydrogen atom. | | | 6. To determine the ionization potential of mercury. | | | 7. To determine the absorption lines in the rotational spectrum of iodine vapour. | | | 8. To determine the value of e/m by (a) magnetic focusing or (b) bar magnet. | | | 9. To setup the Millikan oil drop apparatus and determine the charge of an electron. | | | 10. To show the tunneling effect in tunnel diode using I - V characteristics. | | | 11. To determine the wavelength of laser source using diffraction of single slit. | | | 12. To determine the wavelength of laser source using diffraction of double slits. | | | 13. To determine (1) | | | wavelength and (2)
angular spread of He-Ne
laser using plane
diffraction grating. | | | |--|--|--| | | | | | Department | Physics | Semester | Fourth semester | |------------|-------------------------------|----------|-----------------| | Subject | Analog Systems & Applications | Credit | 6 | | Course | | Paper No | PHY-HC-4036 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---------------|-----------------------------|-------------|-------|----------|--------------| | Unit I: | P and N type | Dr. | 10 | January | From | | Semiconductor | semiconductors. Energy | Chandrama | | and | 20/1/21 | | Diodes | Level Diagram. | Kalita, | | February | to
8/2/21 | | | Conductivity and Mobility, | | | | 0/2/21 |
| | • | | | | | | | Concept of Drift velocity. | | | | | | | PN Junction Fabrication | | | | | | | (Simple Idea). Barrier | | | | | | | Formation in PN Junction | | | | | | | Diode. Static and Dynamic | | | | | | | Resistance. Current Flow | | | | | | | Mechanism in Forward and | | | | | | | Reverse Biased Diode. Drift | | | | | | | Velocity. Derivation for | | | | | | | Barrier Potential, Barrier | | | | | | | Width and Current for Step | | | | | | | Junction. Current flow | | | | | | | mechanism in Forward and | | | | | | | Reverse Biased Diode. | | | | | | Unit II: Two-
terminal
Devices and
their
Applications | (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell. | Dr.
Chandrama
Kalita, | 6 | February | From 9/2/21 to 17/2/21 | |---|---|-----------------------------|----|--------------------------|-------------------------| | Unit III:
Bipolar
Junction
Transistors | $n-p-n$ and $p-n-p$ Transistors. Characteristics of CB, CEand CC Configurations. Current gains α and β . Relations between α and β . Load Line analysis of Transistors. DC Load line and Q -point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. | Dr.
Chandrama
Kalita, | 6 | February | From 18/2/21 to 23/2/21 | | Unit IV:
Amplifiers | Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. <i>h</i> - parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class <i>A</i> , <i>B</i> & <i>C</i> Amplifiers. | Dr.
Chandrama
Kalita, | 10 | February
and
March | From 25/2/21 to 12/3/21 | | Unit V:
Coupled
Amplifier | Two stage RC-coupled amplifier and its frequency response. | Dr.
Chandrama
Kalita, | 4 | March | From 13/3/21 to 25/3/21 | |--|--|-----------------------------|---|------------------|-------------------------| | Unit VI:
Feedback in
Amplifiers | Effects of Positive and
Negative Feedback on Input
Impedance, Output
Impedance, Gain, Stability,
Distortion and Noise. | Dr.
Chandrama
Kalita, | 4 | March | From 26/3/21 to 31/3/21 | | Unit VII:
Sinusoidal
Oscillators | Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. | Dr.
Chandrama
Kalita, | 4 | April | From 1/4/21 to 6/4/21 | | Unit VIII:
Operational
Amplifiers
(Black Box
approach) | Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. | Dr.
Chandrama
Kalita, | 9 | April | From 7/4/21 to 22/4/21 | | Unit IX:
Applications
of Op-Amps | (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator. | Dr.
Chandrama
Kalita, | 9 | April
and May | From 23/4/21 to 5/5/21 | | Unit X:
Convversion | Resistive network (Weighted and R – 2R Ladder). Accuracy and Resolution. A/D Conversion (successive approximation). | Dr.
Chandrama
Kalita, | 3 | May | From 6/5/21 to 10/5/21 | |------------------------|--|-----------------------------|---|-----|-------------------------| | Lab | A minimum of eight experiments to be done. 1. To study V - I characteristics of PN junction diode, and Light emitting diode. 2. To study the V - I characteristics of a Zener diode and its use as voltage regulator. 3. Study of V - I & power curves of solar cells, and find maximum power point & effciency. 4. To study the characteristics of a Bipolar Junction Transistor in CE configuration. 5. To study the various biasing configurations of BJT for normal class A operation. 6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. 7. To study the frequency response of voltage gain of a RC-coupled transistor amplifier. 8. To design a Wien bridge oscillator for given frequency using an op-amp. | Dr.
Chandrama
Kalita, | 9 | May | From 11/5/21 to 25/5/21 | | 9. | To design a phase shift | | | |-----|-------------------------|--|--| | | oscillator of given | | | | | specifications using | | | | | BJT. | | | | 10. | To study the Colpitt's | | | | | oscillator. | | | | 11. | To design a digital to | | | | | analog converter | | | | | (DAC) of given | | | | | specifications. | | | | 12. | To study the analog to | | | | | digital convertor | | | | | (ADC) IC. | | | | 13. | To design an inverting | | | | | amplifier using Op-amp | | | | | (741/351) for dc | | | | | voltage of given gain. | | | | 14. | To design inverting | | | | | amplifier using Op-amp | | | | | (741/351) and study its | | | | | frequency response. | | | | 15. | To design non- | | | | | inverting amplifier | | | | | using Op-amp | | | | | (741/351) & study its | | | | | frequency response. | | | | 16. | To study the zero- | | | | | crossing detector and | | | | | comparator. | | | | 17. | To add two dc voltages | | | | | using Op-amp in | | | | | inverting and non- | | | | | inverting mode. | | | | 18. | To design a precision | | | | | Differential amplifier | | | | | of given I/O | | | | | specification using Op- | | | | | amp. | | | | 19. | To investigate the use | | | | | of an op-amp as an | | | | | Integrator. | | | | 20. | To investigate the use | | | | | of an op-amp as a | | | | | Differentiator. | | | | Department | Physics | Semester | Fourth semester | |------------|----------------|----------|-----------------| | Subject | | Credit | 6 | | | Waves & Optics | | | | | | | | | Course | | Paper No | | | | | | PHY-HG/RC- | | | | | 4016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|--|---------------------------------|-------|----------------------------|-------------------------| | Unit I:
Superpositio
n of Two
Collinear
Harmonic
Oscillations | Linearity & Superposition Principle. (1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats). | Dr.
Chandra
ma
Kalita, | 4 | January | From 20/1/21 to 27/1/21 | | Unit II:
Superpositio
n of Two
Perpendicula
r Harmonic
Oscillations | Graphical and Analytical Methods. Lissajous Figures Dr. Chandrama Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka with equal an unequal frequency and their uses. | Dr.
Chandra
ma
Kalita, | 2 | January
and
February | From 28/1/21 to 1/2/21 | | Unit III:
Waves
Motion | General: Transverse waves on
a string. Travelling and
standing waves on a string.
Normal Modes of a string. | Dr.
Chandra
ma
Kalita, | 7 | February | From 2/2/21 to 12/2/21 | | | Group velocity, Phase velocity. Plane waves. Spherical waves, Wave intensity. | | | | | |--------------------------|--|---------------------------------|---|--------------------------|-------------------------| | Unit IV:
Fluids | Surface Tension: Synclastic and anticlastic surface — Excess of pressure — Application to spherical and cylindrical drops and bubbles — variation of surface tension with temperature — Jaegar's method. Viscosity — Rate flow of liquid in a capillary tube — Poiseuille's formula — Determination of coefficient of viscosity of a liquid — Variations of viscosity of liquid with temperature — lubrication. | Dr.
Chandra
ma
Kalita, | 6 | February | From 13/2/21 to 22/2/21 | | Unit V:
Sound | Simple harmonic motion - forced vibrations and resonance - Fourier's Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound -
Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine's formula - measurement of reverberation time - Acoustic aspects of halls and auditoria. | Dr.
Utpala
Baishya, | 6 | February
and
March | From 23/2/21 to 2/3/21 | | Unit VI :
Wave Optics | Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle. | Dr.
Utpala
Baishya, | 3 | March | From 3/3/21 to 8/3/21 | | Unit VII :
Interference | Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination and Fringes of equal thickness. Newton's Rings: measurement of wavelength. Michelson's Interferometer: Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength difference, Refractive index Visibility of fringes. | Dr.
Utpala
Baishya , | 10 | March | From 9/3/21 to 22/3/21 | |--|--|----------------------------|----|-------|-------------------------| | Unit VIII:
Michelson
Interferomete | (1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Refractive Index. (4) Visibility of fringes. | Mr.
Jayanta
Deka | 3 | March | From 23/3/21 to 31/3/21 | | Unit IX: Diffraction | Fresnel and Fraunhofer diffraction . Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propa- gation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel diffraction pattern of a straight edge and at a circular aperture . Resolving Power of a telescope. Fraunhofer diffraction due to a Single slit , Diffraction grating . Resolving power of grating. | Mr.
Jayanta
Deka | 14 | April | From 1/4/21 to 23/4/21 | | Unit X :
Polarization | Transverse nature of light waves. Double Refraction, Plane, circular and elliptically polarized light, Production and analysis of polarized light. Retarding plates. | Mr.
Jayanta
Deka | 5 | April | From 24/4/21 to 29/4/21 | |--------------------------|---|---|----|---------------|-------------------------| | Lab | A minimum of five experiments to be done. 1. To study the variation in liquid column height with diameter of capillary tube and determine the surface tension of the liquid. 2. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde's Experiment and to verify Z² — T Law. 3. To determine the coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method) 4. To determine the focal length of a convex mirror with the help of convex lens. 5. To determine the refractive index of a liquid by using plane mirror and convex lens. 6. To determine the focal length of two lenses and their combination by | Dr. Chandra ma Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka | 14 | April and May | From 30/4/21 to 20/5/21 | | displacement method. | | | |--|--|--| | 7. Familiarization with
Schuster's focussing;
determination of angle of
prism. | | | | 8. To determine the
Refractive Index of the
Material of a Prism using
Sodium Light. | | | | To determine wavelength
of sodium light using
Newton's Rings. | | | | Department | Physics | Semester | Fourth semester | |------------|-----------|----------|-----------------| | Subject | | Credit | 4 | | | Photoshop | | | | | | | | | Course | | Paper No | PHY-SE-4044 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |------------|--|-------------|-------|----------|---------| | Unit I: | Overview of Adobe Photoshop | Dr. | 3 | January | From | | Getting | CC, Features of Adobe | Chandrama | | and | 20/1/21 | | Started | Photoshop CC | Kalita, | | February | То | | with Adobe | • | | | | 10/2/21 | | Photoshop | | | | | | | CC | | | | | | | Unit II: | Overview of Tools Used in | Dr. | 5 | February | From | | Importance | Adobe Photoshop CC,
Importance of Adobe | Chandrama | | | 11/2/21 | | of Adobe | Importance of Adobe Photoshop CC | Kalita, | | | to | | Photoshop | - | | | | 22/2/21 | | CC | | | | | | |--|--|---|---|--------------------------|-------------------------| | Unit III:
Working
with
Typography | Typography, Creating
Typographies, Choosing the
Right Font and Color | Dr.
Chandrama
Kalita, | 4 | February
and
March | From 23/2/21 to 2/3/21 | | Unit IV:
Working
with Layers
and Images | Cropping a Photo, Resizing Images, Basics of Layers, Creating Layers for Print and Digital Media, Aligning Images within Multiple Layers, Merging Layer Techniques | ,
Dr. Utpala
Baishya , | 6 | February
and
March | From 3/3/21 to 16/3/21 | | Unit V:
Working
with Filters | Photoshop Filters, Smart
Filters, Common Features of
Photoshop Filter | Dr. Utpala
Baishya , | 4 | March | From 17/3/21 to 30/3/21 | | Unit VI: Digital Painting in Adobe Photoshop CC | Working with Brush Tool,
Importance of Using Colors | ,
Mr.
Jayanta
Deka | 4 | March
and April | From 31/3/21 to 19/4/21 | | Unit VII:
Masking
and File
Formats in
Adobe
Photoshop
CC | Introduction to Mask,
Creating Vector and Layer
Masks, Essential File
Formats, Choosing the Right
Format for Print and Digital
Media | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr.
Jayanta
Deka | 4 | April | From 20/4/21 to 30/4/21 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 601 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|-----------------|-------|----------------------|----------------------| | a) | NUCLEAR PHYSICS: | | | | | | 1 | Nuclear forces and Stability of Nuclei: Concept of packing fraction and binding energy, binding energy curve and its significance. Nucleon- nucleon forces qualitative discussions on nuclear force. Brief outline of Yukawas meson theory, Nuclear stability, neutron proton ratio in stable nuclei, stability curve, odd-even rules of nuclear stability. 8 Lectures | Jayanta
Deka | 8 | January-
February | 20/1/21-
5/2/21 | | 2 | Alpha decay: Cause of alpha decay, basic a-decay process, range and energy of a-decay, a-decay systematics, Geiger Nuttle rules, Qualitative discussion on the theory of a-decay. 6 Lectures | Jayanta
Deka | 6 | February | 6/2/21-
18/2/21 | | 3 | Beta-decay: Types of \(\beta\)-decays, conditions of B & B decay and K capture, B-ray spectrum, Pauli's neutrino hypothesis. | Jayanta
Deka | 5 | February | 19/2/21-
26/2/21 | | 4 | Gamma-rays: y-rays and their origin. Interaction of y-particle with | Jayanta
Deka | 2 | February | 27/2/21 -
28/2/21 | | | matter. | | | | | |---|---|-----------------|----|-----------------|---------------------| | 5 | Nuclear models: Evidence in favour of liquid properties of nuclei, Liquid drop model Bethe-Weisackar's mass formula. Applications of mass formula estimation of fission energy, prediction of most stable member of an isobaric family. Shell model (Basic concepts only). | Jayanta
Deka | 8 | March | 1/3/21 -
12/3/21 | | 6 | Nuclear Reactions: Types of nuclear reactions, conserved
quantities of nuclear reaction, energies of nuclear reaction - Q-value & its experimental determination. Exoergic & endoergic reactions. Cross-section of nuclear reaction and its unit. Nuclear fission and chain reaction, critical size, controlled chain reaction and basic principle of nuclear reactor. Nuclear fusion reaction-basic concepts of fusion reactions, fusion barrier, fusion and thermonuclear reactions (PP chains only). | Jayanta
Deka | 15 | March-
April | 13/3/21 -
8/4/21 | | 7 | Accelerators: Necessity of charge particle acceleration construction and working principle of linear accelerator. Construction and working principle of a cyclotron. | Jayanta
Deka | 5 | April | 9/4/21 -
30/4/21 | | 8 | Detectors: Principles of detection of charge particles. Construction and working principle of gas filled detectors. Ionization chamber - its construction & working principle. 9. Cosmic rays: Origin of cosmic rays, primary & secondary cosmic rays and their composition. The East West effect. Latitude, longitude & altitude effec, Extensive Air Shower (EAS). | Jayanta
Deka | 5 | May | 2/5/21 -
15/5/21 | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 602 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-------------------|-------|----------------------|----------------------| | a) | MATHEMATICAL METHODS: | | | | | | | Introduction to tensor, transformation of coordinates, contravariant and covariant tensor, tensorial character of physical quantities, symmetric and antisymmetric tensors, kronecker delta. Rules for combination of tensors- addition, subtraction, outer multiplication, contractions and inner multiplications. | Utpala
Baishya | 15 | January-
February | 20/1/21 -
15/2/21 | | b) | SOLID STATE PHYSICS: | | | | | | 1. | The idea of amorphous and crystalline solids, The crystal lattice and translation vectors, unit cell, types of crystal lattice, Miller indices, diffraction of X-rays, use of Bragg's law to the determination of lattice constants. | Utpala
Baishya | 10 | February | 16/2/21 -
28/2/21 | | 2. | The different types of crystal bonding: ionic, covalent, metallic, | Utpala
Baishya | 5 | March | 1/3/21 -
10/3/21 | | | Van der Waal and hydrogen
bondings, cohesive energy of ionic
crystal, Madelung constant. | | | | | |----|---|-------------------|----|-------|----------------------| | 3. | Free electron theory of metals, Boltzmann's equation of state, electronic specific heat, electrical and thermal conductivity of metals, Wiedemann-Franz law. (Quantum Mecanical treatment to be used).Bloch theorem in one dimension, Kronig-Penny model of energy bands of solids, distinction among metal, insulator and semiconductor, intrinsic and extrinsic semiconductors (qualitative discussion only). | Utpala
Baishya | 15 | | 11/3/21 -
31/3/21 | | 4. | Introductory concept of superconductivity, Meissner effect, types 1 and type II superconductors. | Utpala
Baishya | 5 | April | 1/4/21 -
31/4/21 | | 5. | Magnetic properties of solids: Magnetization, magnetic intensity, magnetic susceptibility, permeability, hysteresis, B-H curve and energy loss in hysteresis, different classes of magnetic material, magnetic moment, Bohr magneton, Larmor precession, Classical theory of paramagnetism (Langevin's theory and Curie law), Weiss theory(Quantum Mecanical treatment to be used), relation between para and ferromagnetism, Ferromagnetic domain. | Utpala
Baishya | 10 | May | 2/5/21 -
15/5/21 | # **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marks | 60 | | Course | BSc (Semester) | Paper no | 603 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------|----------------------| | 1 | MODERN OPTICS: | | | | | | 1. | Optics of crystals: Wollaston prism,
Rochon prism, Jones calculus,
Interference of polarized light:
interference due to crystal plates in
plane polarised light, Babinet
compensator. Principle of liquid
crystal display. | Chandrama
Kalita | 8 | January | 20/1/21 -
31/1/21 | | 2. | Lasers: Characteristics of laser light, absorption Spontaneous emission, Stimulated Vémission, Einstein coefficients, Population inversion and light amplification, Essential components of the laser, Ruby and He-Ne laser (principles only). Elementary idea about nonlinear optics: Second Harmonic Generation. | Chandrama
Kalita | 10 | February | 1/2/21 -
28/2/21 | | 3. | Holography: Formation of a hologram, Reconstruction of the hologram (mathematical aspect). | Chandrama
Kalita | 6 | March | 1/3/21-
12/3/21 | | 4. | Optical Fibers: Types of fibers; propagation of a ray through step index fiber: numerical aperture, multipath dispersion; propagation through graded index fiber. Basic idea about communication through an optical fiber cable (Block diagram). | Chandrama
Kalita | 10 | March | 13/3/21-
31/3/21 | |----|---|---------------------|----|-------|----------------------| | 5. | Optical components & Spectrographs: Ramsden and Huygen's eyepieces, oil immersion objective, Prism spectrograph (Glass and quartz), Grating spectrograph. | Chandrama
Kalita | 6 | April | 1/4/21-
12/4/21 | | b) | ELECTROMAGNETIC THEORY: | | | | | | 1. | Electromagnetic field equation in integral and differential form, displacement current, Maxwell's equations, Energy Conservation Law-Poynting theorem and Poyntingvector. | Chandrama
Kalita | 6 | April | 16/4/21 -
30/4/21 | | 2. | Electromagnetic wave equation, velocity of electromagnetic wave, Monochromatic plane wave equation in free space and conducting medium. Reflection and Refraction of plane electromagnetic wave for normal and oblique incidence, Snell's law, reflection and transmission co-efficient, Fresnel's equations, Polarisation of electromagnetic wave, linear, circular and elliptical polarization. Brewster's law. | Chandrama
Kalita | 14 | May | 2/5/21 -
16/5/21 | **Department of Physics** SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major) | |------------|----------------|----------|-------------------------| | Subject | Physics | Marka | 60 | | Course | BSc (Semester) | Paper no | 604 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|--|---------------------|-------|----------|----------------------| | a) | STATISTICAL MECHANICS: | | | | | | 1. | Statistical system, and its coordinates, specification of a state in statistical mechanics, Macrostate and microstate, phase space, ensemble, Boltzmann entropy relation ergodic hypothesis, postulate of equal a priori probability, density of phase points is phase space, Liouville' theorem. | Jayanta
Deka | 8 | February | 1/2/21 -
28/2/21 | | 2. | Symmetry of wavefunction, restriction regarding the number of particles in given state, different types of statistics Maxwell-Boltzmann(MB), Bose-Einstein (BE) and Fermi-Dirac(FD) Statistics, Most probable distribution relation in MB, BE and FD statistics and their comparison. Degeneracy Factor, Density of state. | Chandrama
Kalita | 7 | March | 1/3/21 -
20/3/21 | | 3 | Application of MB statistics to derive Maxwell distribution law (velocity, energy momentum and frequency). | Chandrama
Kalita | 5 | March | 21/3/21 -
31/3/21 | | 4 | Fermi energy and Fermi temperature, Fermi distribution function, Application of FD statistics to discuss electronic specific heat. | Utpala
Baishya | 5 | April | 1/4/21 -
13/3/21 | | 5 | Application of BE statistics to explain BE condensation and to derive Black body radiation formula. | Utpala
Baishya | 5 | May | 2/5/21 -
15/5/21 | | b) | COMPUTER APPLICATIONS: | | | | | |----
---|------------|----|------------------|---------------------| | 1 | Programming exercise (either FORTRAN-95 or C or C): simple mathematical series generation and summation, sorting of numbers largest of n numbers, sorting a list ascending/descending order, solution of quadratic equation, solution of simultaneous linear equation, least square graph fitting (straight line and quadratic curve) of given data, iterative methods, implementation of Runge-Kutta 4th order method of solving differential equation and Simpson's rule for integration. | Kishor Das | 30 | February-
May | 2/2/21 -
15/5/21 | # **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 605 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|---------------------|-------|----------|---------------------| | 1 | To determine the Q- factor of a series resonance circuit containing L. C and R for three different values of R. | Chandrama
Kalita | 8 | February | 1/2/21 -
20/2/21 | | 2 | To determine the value of "J' (the mechanical equivalent of heat) by Callender and Bern's method. | Chandrama
Kalita | 10 | March | 5/3/21 -
25/3/21 | | 4 | To determine the value of self- | Chandrama | 8 | April | 1/4/21 - | |---|--------------------------------------|--------------|---|-------|----------| | | induction of a coil with the help of | Kalita | | | 12/4/21 | | | Anderson's Bridge. | | | | | | | | | | | | | | To measure the phase difference | Jayanta Deka | 8 | May | 1/5/21 - | | | between he sgnal accros R and C of | | | | 15/5/21 | | | an R-C network using CRO and | | | | | | | hence find the value of the resistor | | | | | | | and frequency of the signal. | | | | | | | | | | | | # **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (Major Practical) | |------------|----------------|----------|-----------------------------------| | Subject | Physics | Marks | 75 | | Course | BSc (Semester) | Paper no | 606 | | Unit | Course Content | Allotted | Hours | Month | date | |------|---|-------------------|-------|-------|---------------------| | | | to | | | | | a) | <u>PROJECT</u> | | | | | | | (Experimental project work of any relevant topic within the syllabus of Physics, to be guided by a teacher and to be submitted along with a report) | Utpala
Baishya | 8 | March | 1/3/21 -
31/3/21 | | b) | COMPUTER PROGRAMMING: | | | | | | 1. | To determine (a) mean, (b)standard deviation and (c)standard error of the given experimental data. | Kishor
Das | 8 | March | 1/3/21 -
31/3/21 | | 2. | To analyse the supplied experimental data between two variables using least square straight line fitting programme. | Kishor
Das | 8 | April | 1/4/21 -
30/4/21 | | 3. | To rearrange the supplied numerical | Kishor | 8 | May | 2/5/21 - | | data in ascending/descending order | Das | | 15/5/21 | |--------------------------------------|-----|--|---------| | and find the largest/smallest number | | | | | in a given list of numbers. | | | | | - | | | | ### **Department of Physics** # SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (General) | |------------|----------------|----------|---------------------------| | Subject | Physics | Marks | 80 | | Course | BSc (Semester) | Paper no | 601 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|---|-----------------|-------|----------------------|----------------------| | a) | Nuclear Physics: | | | | | | 1. | Concept of a Nucleus - its composition, mass, volume, density and temperature, units and dimension. | Jayanta
Deka | 5 | January-
February | 20/1/21 -
5/2/21 | | 2. | Mass defect and packing fraction, total binding energy, binding energy per nucleon, binding energy curve & its significance, nucleon separation energy, nuclear reactions, Q-value of a reaction, exothermic & endothermic reactions. | Jayanta
Deka | 6 | February | 6/2/21 - 20/2/21 | | 3. | Type of radioactive decays, radioactive decay law, concept of half life and disintegration constant, natural radioactivity, radioactive dating. Activity of radioactive sources, its unit. Radioisotopes - their production & uses. | Jayanta
Deka | 5 | February | 21/2/21 -
28/2/21 | | 4. | Need of a particle accelerator,
Linear Accelerator its construction | Jayanta
Deka | 5 | March | 1/3/21 -
15/3/21 | | | & working principle. Need of nuclear Detectors. Ionization Chamber - its construction & working principle. | | | | | |----|--|---------------------|---|----------------------|----------------------| | 5. | Primary and secondary cosmic rays and their composition, EAS. | Jayanta
Deka | 5 | May | 2/5/21 -
15/5/21 | | c) | Electronics: | | | | | | 1. | Semiconductors, P-N junction unction dode, unbiased and biased P-N junction, depletion layer, barrier potential, junction capacitnice Voltampere relations (derivation nod NANury), photo diode, Zener diode, Dentamer, OR, AND, NOT, NOR and NAND Gates using diode and transistor. | Chandrama
Kalita | 8 | January-
February | 20/1/21 -
5/2/21 | | 2. | Rectifier, half wave and full-wave, efficiency of rectification, ripple factor, idea of filter circuit. | Chandrama
Kalita | 5 | February | 6/2/21 -
20/2/21 | | 3. | Thevenin's and Norton's theorems, maximum power transfer theorem | Chandrama
Kalita | 5 | March | 1/3/21 -
15/3/21 | | 4. | Transistor, different configurems, maximum power transferathistor, alpha and beta of a transistor, transistor as amplifier. | Chandrama
Kalita | 6 | March | 16/3/21 -
25/3/21 | | 5. | Biasing and Q-point of a transistor, stability factors, biasing circuits. | Chandrama
Kalita | 5 | March | 26/3/21 -
31/3/21 | | 6. | Classification of amplifiers: class A, B, C, voltage and power amplifiers. | Chandrama
Kalita | 2 | April | 1/4/21 -
10/4/21 | | 7. | Two port four terminal device and z, y and h-parameters. Use of h-parameters to find input and output resistances, current, voltage and power gain of a small signal transistor amplifier. | Chandrama
Kalita | 4 | April | 11/4/21-
30/4/21 | | 8. | Feedback and Barkhausen criterion for sustained oscillations, Tuned collector oscillator. | Chandrama
Kalita | 3 | May | 2/5/21 -
5/5/21 | | c) | Electromagnetic waves: | | | | | | 1. | Electromagnetic wave spectrum, graphical representation of electromagnetic wave. | Chandrama
Kalita | 4 | May | 6/4/21 -
10/5/21 | | 2. | Maxwell's equations, wave equation in free space from Maxwell's equations, velocity of | Chandrama
Kalita | 4 | May | 11/5/21 -
15/5/21 | | | electromagnetic waves in free space,
Pointing vector. | | | | | |----|---|-------------------|----|----------|----------------------| | d) | Solid State Physics | | | | | | 1. | Crystalline and amorphous state of substances, single crystal and polycrystalline substances, basis, crystal lattice, unit cell, primitive unit cell, translation vectors, lattice parameters, directions, lattice planes, Miller indices, inter-planar spacing | Utpala
Baishya | 10 | February | 6/2/21 -
20/2/21 | | 2. | Crystallographic axes, Crystal systems and Bravais lattice. | Utpala
Baishya | 4 | March | 1/3/21 -
15/3/21 | | 3. | Different types of bonding in solids, ionic, covalent, metallic and hydrogen bonding. | Utpala
Baishya | 5 | March | 16/3/21 -
25/3/21 | | 4. | Classical free electron theory of metals., | Utpala
Baishya | 2 | April | 1/4/21 -
10/4/21 | ### **Department of Physics** ### SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | 6 th (General | |------------|----------------|----------|--------------------------| | | | | Practical) | | Subject | Physics | Marks | 100 | | Course | BSc (Semester) | Paper no | 601 | | Unit | Course Content | Allotted to | Hours | Month | date | |------|------------------------------------|-------------|-------|----------|----------| | | | | | | | | 1 | To determine the value of g' by | Utpala | 8 | February | 1/2/21- | | | Kater's pendulum. | Baishya | | | 28/2/21 | | 2 | To determine the value of 'J', the | Utpala | 6 | March | 1/3/21 - | | | mechanical equivalent of heat by | Baishya | | | 15/3/21 | | | Joule's calorimeter. | | | | | | 3 | To determine the angle of | Chandrama | 8 | April | 1/4/21 - | |---
--------------------------------------|--------------|---|-------|-----------| | | minimum deviation and angle of the | Kaita | | | 15/4/21 | | | prism with the help of a | | | | | | | spectrometer and hence find | | | | | | | refractive index of the material of | | | | | | | the prism. | | | | | | 4 | To assemble OR, AND and NOT | Jayanta Deka | 6 | March | 16/3/21 - | | | gates using diode and transistor and | | | | 31/3/21 | | | verify their tuth tables. | | | | | | 5 | To draw the characteristics of- (i) | Chandrama | 6 | April | 16/4/21 - | | | a forward biased PN diode and (ii) | Kaita | | | 30/4/21 | | | reverse biased Zener diode and | | | | | | | hence determine the ac resistance of | | | | | | | the PN diode and breakdown | | | | | | | voltage of the Zener diode. | | | | | #### DEPARTMENT OF PHYSICS ### SBMS COLLEGE, SUALKUCHI Session: 2021-22 (August –December) | Department | Physics | Semester | First semester | |------------|---------------------------|----------|----------------| | Subject | Mathematical
Physics I | Credit | 6 | | Course | | Paper No | PHY-HC-1016 | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted | Hours | Month | Date | |----------|-------------------------------------|----------|-------|-----------|-------------| | | | to | | | | | Unit I: | Revision: Properties of vectors | Dr. | 25 | August- | From | | Vector | under rotations. Scalar product | Utpala | | September | 1/8/2021 | | Calculus | and its invariance under rotations. | Baishya | | | to 6/9/2021 | | | Vector product, Scalar triple | | | | | | | product and their interpretation in | | | | | | | terms of area and volume | | | | | | | respectively. Scalar and Vector | | | | | | | fields. | | | | | | | Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities. Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs). | | | | | |--|---|--------------------------|----|-----------------------|------------------------------| | Unit II: First and Second order Differential Equations | First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. | Dr.
Utpala
Baishya | 17 | September | From 7/9/2021 to 28/9/2021 | | Unit III:
Orthogonal
Curvilinear
Coordinates | Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. | Dr.
Utpala
Baishya | 6 | September-
October | 29/9/2021
to
6/10/2021 | | Unit IV:
Dirac Delta
function
and its
Properties | Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function. Properties of Dirac delta function. | Dr.
Utpala
Baishya | 2 | October | From 7/10/2021 to 22/10/2021 | | Unit V:
Introduction
to
Probability | Independent random variables: Probability distribution functions; binomial, Gaussian and Poisson, with examples. Mean and variance. | Dr.
Utpala
Baishya | 4 | October | From 23/10/2021 to 27/10/2021 | |--|--|--------------------------|----|----------------------|---| | Unit VI:
Theory of
Errors | Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. Least-squares fit. | Dr.
Utpala
Baishya | 6 | October-
November | From/
28/10/
2021 to
3/11/2021 | | Lab | Introduction and Overview Computer architecture and organization, memory and Input/output devices. Basics of scientific computing Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflowemphasize the importance of making equations in terms of dimensionless variables, Iterative methods Review of C & C++/Python/ Matlab/ Mathematica Programming fundamentals Introduction to Programming, constants, variables and data types, operators and Expressions | Dr.
Utpala
Baishya | 30 | November | From 4/11/2022 to 20/11/2022 | | | I/O statements, scanf and printf, c in and c out, Manipulators for data formatting, Control statements (decision making and looping statements) (if statement. if-else Statement. Nested if Structure. else-if Statement. Ternary Operator. goto Statement. switch Statement. Unconditional and Conditional Looping. while | | | | | | Loop. do-while Loop. for Loop. | | | |---|--|--| | Breakand continue Statements. | | | | Nested Loops), Arrays (1D & 2D) | | | | and strings, user defined | | | | | | | | functions, Structures and Unions, | | | | Idea of classes and objects. | | | | Programs | | | | Sum & average of a list of | | | | numbers, largest of a given list of | | | | numbers and its location in the | | | | list, sorting of numbers in | | | | ascending descending order, | | | | Binary search. | | | | | | | | Random number generation | | | | Area of circle, area of square, | | | | volume of sphere, value of pi (π) | Solution of Algebraic and | | | | Transcendental equations | | | | by Newton Raphson | | | | methods | | | | Solution of linear and | | | | quadratic equation, solving | | | | $\alpha = tan\alpha, I = I_0(sin\alpha/\alpha)^2$ in | | | | | | | | optics | | | | Interpolation by Newton | | | | Gregory Forward and | | | | Backward difference formula | | | | backward difference for mula | | | | Evaluation of trigonometric | | | | functions e.g. $\sin\theta$, $\cos\theta$, $\tan\theta$ | | | | etc. | | | | Numerical Integration | | | | (Trapezoidal and Simpson | | | | rules), Monte Carlo method | | | | | | | | Given Position with equidistant | | | | time data to calculate velocity | | | | and acceleration and vice versa. | | | | Find the area of B-H | | | | Hysteresis loop | | | |--| Session: 2021-22 (August –December) | Department | Physics | Semester | First semester | |------------|-----------|----------|----------------| | Subject | Mechanics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HC-1026 | | | | • | | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted to | Hours | Month | Date | |--------------|------------------------------|-------------|-------|--------|-----------| | Unit I: | Reference frames. Inertial | Dr. | 6 | August | From | | Fundamentals | frames; Review of Newton's | Chandrama | | | 1/8/2021 | | of Dynamics | Laws of Motion. Galilean | Kalita | | | to | | | transformations; Galilean | | | | 11/8/2021 | | | invariance. Momentum of | | | | | | | variable mass system: | | | | | | | motion of rocket. Motion of | | | | | | | a projectile in Uniform | | | | | | | gravitational field Dynamics | | | | | | | of a system of particles. | | | | | | | Centre of Mass. Principle of | | | | | | | conservation of momentum. | | | | | | | Impulse. | Unit II: Work
and Energy | Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non-conservative forces. Law of conservation of Energy. | Mr.
Jayanta
Deka | 4 | August | From
12/8/2021
to
18/8/2021 | |------------------------------------|--|----------------------------|----|----------------------------|--------------------------------------| | Unit III:
Collisions | Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames. | Dr.
Chandrama
Kalita | 3 | August | From
19/8/2021
to
26/8/2021 | | Unit IV:
Rotational
Dynamics | Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum.
Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation. | Mr.
Jayanta
Deka | 12 | August
and
September | From 27/8/2021 to 14/9/2021 | | Unit V:
Elasticity | Relation between Elastic constants. Twisting torque on a Cylinder or Wire. Cantilever. | Dr.
Chandrama
Kalita | 3 | September | From
15/9/2021
to
22/9/2021 | | Unit VI:
Fluid Motion | Kinematics of Moving
Fluids: Poiseuille's Equation
for Flow of a Liquid through
a Capillary Tube. | Dr.
Chandrama
Kalita | 2 | September | From 23/9/2021 to 27/9/2021 | | Unit VII:
Gravitation
and Central
Force Motion | \mathcal{L} | Dr.
Chandrama
Kalita | 8 | September
and
October | From 28/9/2021 to 24/10/2021 | |---|---|----------------------------|----|-----------------------------|--------------------------------------| | Unit VIII:
Oscillations | SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. Compound Pendulum. | Dr.
Chandrama
Kalita | 8 | October
and
November | From 25/10/2021 to 2/11/2021 | | Unit IX:
Non-Inertial
Systems | Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. | Mr.
Jayanta
Deka | 4 | November | From
4/11/2021
to
8/11/2021 | | Unit X:
Special
Theory of
Relativity | Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. | Mr.
Jayanta
Deka | 10 | November | From 9/11/2021 to 20/11/2021 | | | Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum. | | | | | |-----|---|---|----|-----------------------|----------------------------| | Lab | A minimum of seven experiments to be done. 21. Measurements of length (or diameter) using vernier caliper, screw gauge, Spherometer and travelling microscope. 22. To study the Motion of Spring and calculate (a) Spring constant and (b) Rigidity modulus. 23. To determine the Moment of Inertia of a cylinder about two different axes of symmetry by torsional oscillation method. 24. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method). 25. To determine the Young's Modulus of the material of a wire by Searle's apparatus. 26. To determine the Modulus of Rigidity | Dr. Chandrama Kalita and Mr. Jayanta Deka | 15 | November and December | From 21/11/21 to 7/12/2021 | | of a Wire Static | | |------------------------|--| | method. | | | 27. To determine the | | | value of g using Bar | | | Pendulum. | | | 28. To determine the | | | value of g using | | | Kater's Pendulum. | | | 29. To determine the | | | height of a building | | | using a Sextant. | | | 30. To determine g and | | | velocity for a freely | | | falling body using | | | Digital Timing | | | Technique | | | Department | Physics | Semester | First semester | |------------|-----------|----------|----------------| | Subject | Mechanics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HG/RC-1016 | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted to | Hours | Month | Date | |----------|-------------------------------|-------------|-------|--------|-----------| | Unit I: | Vector algebra. Scalar and | Dr. Utpala | 6 | August | From | | Vectors | vector products. Derivatives | Baishya | | | 1/8/2021 | | | of a vector with respect to a | | | | to | | | parameter. Ordinary | | | | 9/8/2021 | | | Differential Equations: 1st | | | | | | | order homogeneous | | | | | | | differential equations. 2nd | | | | | | | order homogeneous | | | | | | | differential equations with | | | | | | | constant coefficients | | | | | | Unit II: | Frames of reference. | Mr. Jayanta | 10 | August | From | | Laws of | Newton's Laws of motion. | Deka | | | 10/8/2021 | | Motion | Dynamics of a system of particles. Centre of Mass. | | | | to
23/8/2021 | |-------------------------------------|---|----------------------------|---|-----------------------------|--------------------------------------| | Unit III:
Momentum
and Energy | Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. | Dr.
Chandrama
Kalita | 6 | August | From 24/8/2021 to 31/8/2021 | | Unit IV :
Rotational
Motion | Angular velocity and angular momentum. Torque. Conservation of angular momentum | Dr.
Chandrama
Kalita | 5 | September | From 1/9/2021 to 6/9/2021 | | Unit V :
Gravitation | Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). | Mr. Jayanta
Deka | 7 | September | From 7/9/2021 to 17/9/2021 | | Unit VI :
Oscillations | Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. Compound pendulum. | Mr. Jayanta
Deka | 7 | September | From
18/9/2021
to
28/9/2021 | | Unit VII :
Elasticity | Hooke's law - Stress-strain diagram – Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants – Work done in stretching and work done in twisting a wire – Twisting couple on a cylinder – Determination of Rigidity modulus by static torsion - Torsional | Dr.
Chandrama
Kalita | 8 | September
and
October | From 29/9/2021 to 20/10/2021 | | | pendulum-Determination of Rigidity modulus and moment of inertia – q , η and σ by Searles method. | | | | | |---|--|---|----|----------------------------|------------------------------| | Unit VIII :
Special
Theory of
Relativity | Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities. | Dr. Utpala
Baishya | 7 | October
and
November | From 21/10/2021 to 1/11/2021 | | Lab | A minimum of five experiments to be done. 17. Measurements of length (or diameter) using vernier caliper, screw gauge and Spherometer. 18. To determine the Moment of Inertia of a Symmetrical body about an axis by torsional oscillation method. 19. To determine the Young's Modulus of the material of a wire by Searle's apparatus. 20. To determine the Modulus of Rigidity of a Wire Static method. 21. To determine the elastic Constants of a wire by Searle's method. 22. To determine the value of g using Bar Pendulum. 23. To determine the value of g using Kater's Pendulum. 24. To study the Motion of Spring and calculate (a) Spring | Dr. Chandrama Kalita and Mr. Jayanta Deka | 16 | November | From 2/11/2021 to 20/11/2021 | | constant and (b) value of g. | | | |------------------------------|--|--| | C | | | | Department | Physics | Semester | Third semester | |------------|----------------------------|----------|----------------| | Subject | Mathematical
Physics II | Credit | 6 | | Course | | Paper No | PHY-HC-3016 | | Remarks | | Marks | 100 | | Unit | Course conent | Allotted | Hours | Month | Date | |--------------|--------------------------------------|----------|-------|-----------|----------| | | | to | | | | | Unit I: | Singular Points of Second Order | Dr. | 18
| August | From | | Frobenius | Linear Differential Equations and | Utpala | | | 1/08/21 | | Method | their importance. Frobenius method | Baishya | | | to | | and | and its applications to differential | | | | 23/08/21 | | Special | equations. Legendre, Hermite and | | | | | | Functions | Laguerre Differential Equations. | | | | | | | Properties of Legendre Polynomials: | | | | | | | Rodrigues Formula, Generating | | | | | | | Function, Orthogonality. Simple | | | | | | | recurrence relations. Expansion of | | | | | | | function in a series of Legendre | | | | | | | Polynomials. | | | | | | | • | | | | | | | | | | | | | Unit II: | Solutions to partial differential | Dr. | 14 | August | From | | Partial | equations, using separation of | Utpala | | and | 24/08/21 | | Differential | variables: Laplace's Equation in | Baishya | | September | to | | Equations | problems of rectangular, cylindrical | • | | | 9/09/21 | | | and spherical symmetry. Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular membranes. Diffusion Equation. | | | | | |---|--|--------------------------|----|-----------------------------|------------------------------------| | Unit III:
Some
Special
Integrals | Beta and Gamma Functions and
Relation between them. Expression
of Integrals in terms of Gamma
Functions. | Dr.
Utpala
Baishya | 4 | September | From
10/09/21
to
16/09/21 | | Unit IV:
Matrix | Matrix algebra using index notation, Properties of matrices, Special matrix with their properties: Transpose matrix, complex conjugate matrix, Hermitian matrix, Anti-Hermitian matrix, special square matrix, unit matrix, diagonal matrix, co-factor matrix, adjoint of a matrix, self- adjoint matrix, symmetric matrix, anti-symmetric matrix, unitary matrix, orthogonal matrix, trace of a matrix, inverse matrix. Determinant, Rank, Eigen value, Eigen vector and diagonalisation of matrix. | | 15 | September
and
October | From
17/09/21
to
4/10/21 | | Unit V:
Fourier
Series | Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coeffcients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Application to square and triangular waves. | Dr.
Utpala
Baishya | 9 | October | From 5/10/21 to 25/10/21 | | Lab | The aim of this Lab is to use the computational methods to solve physical problems. Course will consist of lectures (both theory and practical) in the Lab. Evaluation done not on the programming but on the basis of formulating the | Dr.
Utpala
Baishya | 15 | October
and
November | From 26/10/21 to 15/11/21 | | 11 | 1 | 1 | 1 | |---------------------------------------|---|---|---| | problem. | | | | | Introduction to Numerical | | | | | computation softwares Introduction | | | | | to | | | | | Scilab/Mathematica/Matlab/Python, | | | | | Advantages and disadvantages, Scilab | | | | | / Mathematica / Matlab/ Python | | | | | environment, Command window, | | | | | Figure window, Edit window, | | | | | Variables and arrays, Initialising | | | | | variables in Scilab / Mathematica / | | | | | Matlab/ Python, Multidimensional | | | | | ar- rays, Subarray, Special values, | | | | | Displaying output data, data file, | | | | | Scalar and array operations, | | | | | Hierarchy of operations, Built in | | | | | Scilab / Mathematica / | | | | | Matlab/Python functions, | | | | | Introduction to plotting, 2D and 3D | | | | | plotting. | | | | | Curve fttting, Least square fit, | | | | | Goodness of fit, standard | | | | | deviation Ohms law to calculate | | | | | R, Hooke's law to calculate | | | | | spring constant. | | | | | Solution of Linear system of | | | | | equations Solution of Linear | | | | | system of equations by Gauss | | | | | elimination method and Gauss | | | | | Seidal method. Diagonalisation of | | | | | matrices, Inverse of a matrix, Eigen | | | | | vectors, eigenvalues prob- lems. | | | | | Solution of mesh equations of | | | | | electric circuits (3 meshes) Solution | | | | | of coupled spring mass systems (3 | | | | | masses). | | | | | Generation of Special functions | | | | | Generation of Special functions | | | | | using User defined functions in | | | | | Scilab / Math- ematica / Matlab. | | | | | Generating and plotting Legendre | | | | | Polynomials Generating and | | | | | plotting Hermite function. | | | | | First order ODE Solution of first | | | | | order Differential equation Euler, | | | | | modified Euler and Runge-Kutta | | | | | modified Edici and Runge-Rutta | | 1 | | | | |
1 | 1 | |---|---------------------------------------|----------|----------| | | second order methods. First order | | | | | differential equation (a) Current in | | | | | RC, LC circuits with DC source (b) | | | | | Classical equations of motion. | | | | | Second order ODE Second order | | | | | differential equation. Fixed | | | | | difference method. Second order | | | | | Differential Equation | | | | | Harmonic oscillator (no friction) (b) | | | | | Damped Harmonic oscillator (c) | | | | | Over damped (d) Critical damped. | | | | | Partial Differential Equation (PDE) | | | | | Solution of Partial Differential | | | | | Equation: (a) Wave equation (b) | | | | | Heat equation. | | | | | _ | | | | L | l l | <u> </u> | <u> </u> | | Department | Physics | Semester | Third semester | |------------|-----------------|----------|----------------| | Subject | Thermal Physics | Credit | 6 | | Course | | Paper No | PHY-HC-3026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|--|----------------------------------|------------|-----------------|---| | Unit I: Zeroth and First Law of Thermod ynamics | Extensive and intensive Thermodynamic Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State | Allotted to Dr. Chandrama Kalita | Hours
8 | Month
August | Date
From
1/08/21
to
10/08/21 | | | Functions, First Law of
Thermodynamics and its
differential form, Internal | | | | | | | Energy, First Law & various processes, Applications of First Law: General Relation between C _P and C _V , Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient. | | | | | |--|---|----------------------------|----|----------------------------|------------------------------------| | Unit II:
Second
Law of
Thermod
ynamics | Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & effciency. Refrigerator & coeffcient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. | Dr.
Chandrama
Kalita | 10 | August | From
11/08/21
to
24/08/21 | | Unit III: Entropy | Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. | Dr.
Chandrama
Kalita | 7 | August
and
September | From 25/08/21 to 3/09/21 | | | Entropy of the Universe. Entropy Changes in Reversible and Irreversible Processes. Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero. | | | | | |--|--|----------------------------|---|-----------|------------------------------------| | Unit IV:
Thermod
ynamic
Potential
s | Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations. |
Dr.
Chandrama
Kalita | 7 | September | From
4/09/21
To
15/09/21 | | Unit V:
Maxwell
's
Thermod
ynamic
Relation
s | Derivations and applications of Maxwell's Relations. (1) Clausius Clapeyron equation, (2) Values of C_p - C_v , (3) TdS Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. | Dr.
Chandrama
Kalita | 7 | September | From
16/09/21
to
23/09/21 | | Unit VI:
Distribut
ion of
Velocitie
s | Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. | Dr.
Chandrama
Kalita | 7 | September
and
October | From 24/09/21 to 7/10/21 | |---|--|----------------------------|----|-----------------------------|-----------------------------------| | Unit VII:
Molecula
r
Collision
s | Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. | Dr.
Chandrama
Kalita | 4 | October | From
8/10/21
to
22/10/21 | | Unit
VIII:
Real
Gases | Behaviour of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. P-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule- Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule-Thomson Cooling. | Dr.
Chandrama
Kalita | 10 | October
and
November | From 23/10/21 to 8/11/21 | | Lab | 8. To determine Mechanical
Equivalent of Heat, J, by
Callender and Barne's
constant flow method. | Dr.
Chandrama
Kalita | 14 | November | From 9/11/21 to 25/11/21 | |-----|---|----------------------------|----|----------|--------------------------| | | To determine the Coefficient
of Thermal Conductivity of
Cu by Searle's Apparatus. | | | | | | | of Thermal Conductivity of Cu by Angstrom's Method. | | | | | | | of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method. | | | | | | | 12. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT). | | | | | | | 13. To study the variation of Thermo-emf of a Thermocouple with Difference of Temperature of its Two Junctions. | | | | | | | 14. To calibrate a thermocouple to | | | | | | | measure temperature in a specified Range using (1) Null | | | | | | | Method, (2) Direct
measurement using
Op-Amp difference
amplifier and to | | | | | | | determine Neutral
Temperature | | | | | | Department | Physics | Semester | Third semester | |------------|--------------------------------|----------|----------------| | Subject | Digital Systems & Applications | Credit | 6 | | Course | | Paper No | PHY-HC-3036 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted | Hours | Month | Date | |---|---|------------------------|-------|--------|----------------------------------| | | | to | | | | | Unit I:
Introduction
to CRO | Block Diagram of CRO. Electron Gun, Deflection System and Time Base. Deflection Sensitivity. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. | Mr.
Jayanta
Deka | 3 | August | From
1/08/21
to
4/08/21 | | Unit II:
Integrated
Circuits
(qualitative
treatment only) | Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and | Mr.
Jayanta
Deka | 3 | August | From 5/08/21 to 10/08/21 | | | Digital ICs. | | | | | |---|---|------------------------|---|----------------------------|------------------------------------| | Unit III:
Digital Circuits | Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. | Mr.
Jayanta
Deka | 6 | August | From
11/08/21
to
20/08/21 | | Unit IV:
Boolean
Algebra | De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. | Mr.
Jayanta
Deka | 6 | August | From 21/08/21 to 30/08/21 | | Unit V:
Data
Processing
Circuits | Basic idea of Multiplexers,
De-multiplexers, Decoders,
Encoders. | Mr.
Jayanta
Deka | 4 | August
and
September | From 31/08/21 to 6/09/21 | | Unit VI:
Arithmetic
Circuits | Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full | Mr.
Jayanta
Deka | 5 | September | From 7/09/21 to 13/09/21 | | | Subtractors, 4-bit binary Adder/Subtractor. | | | | | |---|--|------------------------|---|----------------------------|------------------------------------| | Unit VII:
Sequential
Circuits | SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race- around conditions in JK Flip-Flop. M/S JK Flip-Flop. | Mr.
Jayanta
Deka | 6 | September | From
14/09/21
to
26/09/21 | | Unit VIII:
Timers: | Block diagram and applications: Astable multivibrator and Monostable multivibrator. | Mr.
Jayanta
Deka | 3 | September | From 27/09/21 to 31/09/21 | | Unit IX:
Shift
Registers | Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). | Mr.
Jayanta
Deka | 2 | October | From 1/10/21 to 5/10/21 | | Unit X:
Counters | Ring Counter, Asynchronous counters, Decade Counter. Synchronous Counter. | Mr.
Jayanta
Deka | 4 | October | From 6/10/21 to 21/10/21 | | Unit XI:
Computer
Organization | Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. | Mr.
Jayanta
Deka | 6 | October
and
November | From 22/10/21 to 1/11/21 | | Unit XII:
Intel 8085
Microproces
sor
Architecture | Main features of 8085. Block diagram. Components. Pin-out diagram. Buses. Registers. ALU. Memory. Stack memory. Timing & | Mr.
Jayanta
Deka | 8 | November | From 2/11/21 to 12/11/21 | | | Control circuitry. | | | | | |---|---|------------------------|----|-----------------------------|------------------------------------| | Unit XIII:
Introduction
to Assembly
Language | 1 byte, 2 byte, & 3 byte instructions. | Mr.
Jayanta
Deka | 4 | November
and
December | From
13/11/21
to
19/11/21 | | Lab | A minimum of eight experiments to be done. 16. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. 17. To test a Diode and Transistor using a Multimeter. 18. To design a switch (NOT gate) using a transistor. 19. To verify and design AND, OR, NOT and XOR gates using NAND gates. 20. To
design a combinational logic system for a specified Truth Table. 21. To convert a Boolean expression into logic circuit and design it using logic gate ICs. 22. Half Adder, Full Adder and 4-bit binary Adder. 23. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder IC. 24. To build Flip-Flop (RS, Clocked RS, Dtype and JK) circuits using NAND gates. | Mr. Jayanta Deka | 16 | | From 20/11/21 to 5/12/21 | | 25. To build JK Master-
slave flip-flop using
Flip-Flop ICs . | | |---|--| | 26. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. | | | 27. To make a 4-bit Shift
Register (serial and
parallel) using D-
type/JK Flip-Flop ICs. | | | 28. To design an astable multivibrator of given specifications using 555 Timer. | | | 29. To design a monostable multivibrator of given specifications using 555 Timer. | | | 30. Write the following programs using 8085 Microprocessor | | | (a) Addition and subtraction of numbers using direct addressingmode | | | (b) Addition and subtraction of numbers using indirect addressin gmode | | | (c) Multiplication by repeated addition | | | (d) Division by repeated subtraction | | | (e) Handling of 16-bit
Numbers | | | (f) Use of CALL and
RETURN Instruction
(g) Block data | | | handling | | | |----------|--|--| | | | | | Department | Physics | Semester | Third semester | |------------|---|----------|----------------| | Subject | Thermal Physics & Statistical Mechanics | Credit | 6 | | Course | | Paper No | PHY-HG/RC-3016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hour | Month | Date | |-----------------|-----------------------------|-------------|------|--------|-----------| | | | | S | | | | Unit I: Laws of | Thermodynamic Description | Mr. | 22 | August | From | | Thermodynamic | of system: Zeroth Law of | Jayanta | | | 1/8/21 to | | S | thermodynamics and | Deka | | | 28/8/21 | | | temperature. First law and | | | | | | | internal energy, conversion | | | | | | | of heat into work, Various | | | | | | | Thermodynamical Processes, | | | | | | | Applications of First Law: | | | | | | | General Relation between | | | | | | | CP & CV , Work Done | | | | | | | during Isothermal and | | | | | | | Adiabatic Processes, | | | | | | | Compressibility & | | | | | | | Expansion Coefficient, | | | | | | | Reversible & irreversible | | | | | | | processes, Second law & | | | | | | | Entropy, Carnot's cycle & | | | | | | | theorem, Entropy changes in | | | | | | | reversible & irreversible | | | | | | | processes, Entropy-
temperature diagrams, Third
law of thermodynamics,
Unattainability of absolute
zero. | | | | | |--|--|-----------------------------|----|--------------------------------|--------------------------| | Unit II: Thermodynamic Potentials | Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations & applications - Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP — Cv), CP/Cv , TdS equations. | Dr. Utpala
Baishya | 10 | August
and
Septemb
er | From 30/8/21to 13/9/21 | | Unit III :
Kinetic Theory
of Gases | Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. | Dr. Utpala
Baishya | 10 | Septemb | From 14/9/21 to 27/9/21 | | Unit IV:
Theory of
Radiation | Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law. | Dr.
Chandram
a Kalita | 6 | Septemb
er and
October | From 25/9/21 to 4/10/21 | | Unit V :
Statistical
Mechanics | Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - dis- tribution of velocity – | Dr.
Chandram
a Kalita | 12 | October
and
Novemb
er | From 5/10/21 to 30/10/21 | | | Quantum statistics – Fermi-
Dirac distribution law –
electron gas – Bose-Einstein
distribution law
– photon gas – comparison
of three statistics. | | | | | |-----|--|--|----|--------------|--------------------------| | Lab | 11. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. | Dr.
Chandram
a Kalita,
Dr. Utpala
Baishya, | 20 | Novemb
er | From 1/11/21 to 30/11/21 | | | of Planck's constant using black body radiation. | Mr.
Jayanta
Deka | | | | | | 13. To determine Stefan's Constant. | | | | | | | 14. To determine the coefficient of thermal conductivity of copper by Searle's Apparatus. | | | | | | | 15.To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method. | | | | | | | the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method. | | | | | | | 17. To determine the temperature coefficient of resistance by | | | | | | T | | |---------------------|--| | Platinum resistance | | | thermometer. | | | 18. To study the | | | variation of thermo | | | emf across two | | | junctions of a | | | thermocouple with | | | temperature. | | | 19. To | | | record and | | | analyze the | | | cooling | | | temperature | | | of an hot | | | object as a | | | function of | | | time using a | | | thermocouple | | | and suitable | | | data | | | acquisition | | | system. | | | 20. To calibrate | | | Resistance | | | Temperature | | | Device (RTD) | | | using Null | | | Method/Off- | | | Balance Bridge. | | | | | | Department | Physics | Semester | Third semester | |------------|---------------------|----------|----------------| | Subject | Digital Photography | Credit | 4 | | | & Editing | | | | Course | | Paper No | PHY-SE-3044 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|---|----------------------------|-------|----------------------------|----------------------------------| | Unit I:
Theory of
Basic
Photography | History of Photography, Introduction to Digital Photography, Digital Camera, dSLR, Advantages and Disadvantages of Digital Photography | Mr.
Jayanta
Deka | 2 | August | From 1/8/21 to 16/8/21 | | Unit II: The
Camera-
Components
and
Concepts | Lens, Focal Length, Lens type,
Aperture, Depth of Field,
Shutter, Shutter Speed, Image
sensor, Memory cards, External
Flash, File types | Dr.
Chandrama
Kalita | 2 | August | From
17/8/21
to
30/8/21 | | Unit III:
Capturing
an Image,
Hands-on
Basics | Elements of Composition: Pattern, Symmetry, Texture, Depth of Field, Lines; Law of Thirds, Camera Shake, Red eye, Lighting, Digital Noise | Dr.
Chandrama
Kalita | 3 | August
and
September | From 31/8/21 to 13/9/21 | | Unit IV:
Exposure | Automatic mode, Manual | Dr.
Chandrama | 5 | September and | From 14/9/21 | | Modes | mode, aperture mode, shutter mode, Scene mode, Portrait mode, landscape mode, close upmode, sports mode, Twilight mode, Night Mode, Black and white, sepia, Panoramic mode. | Kalita | | October | to 22/10/21 | |--|--|------------------------|---|----------------------------|---------------------------| | Unit V:
Conditions
in Digital
Photography | Lighting, Importance of Natural Light, Best Time of Day to Take Photos, Disable Flash Indoors, Disable Flash in Low Light, Use Flash to Balance Bright Light, Get Closer to the Subject, Crop Your Photo, Choose Better Backgrounds, Pick Proper Orientation, Use Point of View, Frame your Subject, Experiment with Abstract Photography, Holding your DSLR | Dr. Utpala
Baishya | 7 | October
and
November | From 23/10/21 to 12/11/21 | | Unit VI:
Digital
Videography | Various Parts, Contrl and Features of Video Camera, Types of daylight applications, Three points lighting- (a) The key light, (b) The fill light and the back light, (c) Bounce and diffuse light, Framing and shots, Camera angle and camera movements | Dr. Utpala
Baishya | 4 | November | From 13/11/21 to 17/11/21 | | Unit VII:
Post
Production | The Digital Workflow: Capturing the Image, Storing the Photo, Cataloging the Image Files, | Mr.
Jayanta
Deka | 7 | November | From
18/11/21
to | | Editir | ng the Photo, Sharing, | | 30/11/21 | |--------|-------------------------|--|----------| | Archi | ving and Backing Up the | | | | Photo | ograph | | | | Department | Physics | Semester | Fifth semester | |------------
----------------------------------|----------|----------------| | Subject | Quantum Mechanics & Applications | Credit | 6 | | Course | | Paper No | PHY-HC-5016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|-----------------------------------|------------|-----------------|----------------------------| | Unit Unit I: Time Dependent Schrödinger Equation | Time dependent Schrödinger equation and dynamical evolution of a quantum state, properties of wave function. Interpretation of wave function. Probability and | Allotted to Dr. Chandrama Kalita, | Hours
6 | Month
August | Date From 1/8/21 to 9/8/21 | | | probability current densities in three dimensions. Conditions for physical acceptability of wave functions. Normalization. Linearity and Superposition Principles. Eigenvalues and eigenfunctions. Position, momentum and | | | | | | | energy operators; commutator of position and momentum operators. Expectation values of position and momentum. wave function of a free particle. | | | | | |---|--|------------------------|----|----------------------------|-------------------------| | Unit II: Time Independen t Schrödinger Equation | Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wave function as a linear combination of energy eigenfunctions; General solution of the time dependent Schrödinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wavepacket for a free particle in one dimension; wave packets, Fourier transforms and momentum space wave function; Positionmomentum uncertainty principle. | Dr. Utpala
Baishya, | 10 | August | From 10/8/21 to 23/8/21 | | Unit III:
Bound
States | Continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problemsquare well potential; Quantum mechanics of | Mr. Jayanta
Deka | 12 | August
and
September | From 24/8/21 to 6/9/21 | | | simple harmonic oscillator-
energy levels and energy
eigenfunctions using
Frobenius method; Hermite
polynomials; ground state,
zero point energy &
uncertainty principle. | | | | | |---|---|-----------------------------|----|-----------------------------|--------------------------| | Unit IV:
Hydrogen-
like Atoms | Time independent Schrödinger equation in spherical polar coordinates; separation of variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wave functions from Frobenius method; shapes of the probability densities for ground & first excited states; Orbital angular momentum quantum numbers l and m; s, p, d, shells. | Dr.
Chandrama
Kalita, | 10 | September | From 7/9/21 to 20/9/21 | | Unit V:
Atoms in
Electric &
Magnetic | Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Electron Magnetic Moment and Magnetic Energy, Gyromag- netic Ratio and Bohr Magneton. Zeeman | Dr. Utpala
Baishya , | 12 | September
and
October | From 21/9/21 to 21/10/21 | | | Effect: Normal and Anomalous Zeeman Effect. Paschen-Back Effect and Stark Effect (Qualitative Discussion only). | | | | | |---------------------------------------|---|--|----|----------------------------|--------------------------| | Unit VI:
Many
Electron
Atoms | Pauli's Exclusion Principle. Symmetric & Antisymmetric W ave Functions. Periodic table. Fine structure. Spin orbit coupling. Spectral Notations for Atomic States. Total angular momentum. Vector Model. Spin-orbit coupling in atoms: L - S and j - j couplings. Hund's Rule. Term symbols. Spectra of Hydrogen and Alkali Atoms (Na etc.). | Mr. Jayanta
Deka | 10 | October
and
November | From 22/10/21 to 2/11/21 | | Lab | Use C/C++/Scilab/FORTRA N/Mathematica/ Python for solving the following problems based on Quantum Mechanics 1. Solve the s-wave Schrödinger equation for the ground state and the first excited state of the hydrogen atom $\frac{d^2y}{dr^2} = A(r)u(r), A(R)$ $A(r) = \frac{2m}{\hbar^2} [V(r) - E]$ Where $V(r) = -\frac{e^2}{r}$ 2. Solve the s-wave radial | Dr. Chandrama Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka | 12 | November | From 3/11/21 to 20/11/21 | | Schrödinger equation | | | |---|--|--| | for an atom | | | | d^2y | | | | $\frac{d^2y}{dr^2} = A(r)u(r),$ $A(r) = \frac{2m}{\hbar^2}[V(r) - E]$ | | | | $A(n) = \frac{2m}{[V(n) - F]}$ | | | | $A(I) = \frac{1}{\hbar^2} [V(I) - E]$ | | | | | | | | Where <i>m</i> is the | | | | reduced mass of | | | | the system (which | | | | can be chosen to | | | | be the mass of an | | | | electron), for the | | | | screened Coulomb | | | | potential | | | | _ | | | | $V(r) = -\frac{e^2 e^{-r/a}}{r}$ | | | | Find the energy (in | | | | eV) of the ground | | | | state of the atom to | | | | an accuracy of | | | | three significant | | | | digits. Also, plot | | | | the corresponding | | | | wave function. | | | | Take <i>e</i> =3.795 | | | | (eVÅ), and $a=3$ Å, | | | | 5 Å, and 7 Å in the | | | | units of $\hbar c =$ | | | | 1973(eVÅ) and m | | | | $= 0.511 \times 10^6 \text{ eV/c}^2.$ | | | | The ground state | | | | energy is expected | | | | to be above -12 | | | | eV in all three | | | | cases. | | | | | | | | 3. Solve the s-wave radial | | | | Schrödinger equation for a particle of mass <i>m</i> | | | | for a particle of illass m | | | | $\frac{d^2y}{dr^2} = A(r)u(r), A(R)$ | | | |---|--|--| | $A(r) = \frac{2m}{\hbar^2} [V(r)]$ | | | | -E] | | | | The anharmonic potential | | | | | | | | V(r) | | | | $= \frac{1kr^2}{2} + \frac{1b}{3}r^3$ | | | | for the ground state | | | | energy (in MeV) of | | | | particle to an | | | | accuracy of three | | | | significant digits. | | | | Also, plot the | | | | corresponding wave | | | | function. Choose | | | | $m=940 \text{ MeV/c}^2$, | | | | k=100 MeV fm ⁻² , | | | | b=0, 10, 30 MeV | | | | fm ⁻³ . In these units, ch=197.3 MeV fm. | | | | | | | | The ground state energy <i>I</i> is expected | | | | to lie in between 90 | | | | and 110 MeV for | | | | all three cases. | | | | | | | | 4. Solve the <i>s</i> -wave radial Schrödinger equation | | | | for the vibration of | | | | hydrogen molecule | | | | $\frac{d^2y}{dr^2} = A(r)u(r),$ | | | | $A(r) = \frac{2\mu}{\hbar^2} [V(r)]$ | | | | -E] | | | | where μ is the reduced
mass of the two-atom
system for the Morse
potential | | | |--|--|--| | $V(r)$ $= D(e^{-2\alpha r}$ $-e^{-\alpha r})$ | | | | $r' = \frac{r - r_0}{r}$
Find the lowest | | | | vibrational energy (in MeV) of the molecule to an accuracy of thee significant digits. Also plotthe | | | | corresponding wave
function. Take
$m=940\times10^6 \text{ eV/c}^2$, $D=0.755501 \text{ eV}$, $\alpha=1.44$,
and $r_0=0.131349 \text{ Å}$. | | | | and 10−0.131349 A. | | | #### DEPARTMENT OF PHYSICS SBMS COLLEGE, SUALKUCHI | Department | Physics | Semester | Fifth semester | |------------|------------------------|----------|----------------| | Subject | Solid State
Physics | Credit | 6 | | Course | | Paper No | PHY-HC-5026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|-----------------------------|-------|--------|----------------------------------| | Unit I: Crystal
Structure | Amorphous and Crystalline Materials. Lattice Translation Vectors. Symmetry operations, Lattice with a Basis - Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor. | Dr.
Chandrama
Kalita, | 10 | August | From 1/8/21 to 12/8/21 | | Unit
II:
Elementary
Lattice Dynamics | Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T³ law. | Dr. Utpala
Baishya , | 10 | August | From
13/8/21
to
31/8/21 | | Unit III: Magnetic Properties of Matter | Dia, Para, Ferri, and Ferromagnetic Materials. Classical Langevin Theory of Dia and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetism and Ferromagnetic Domains. Discussion of B – H Curve. Hysteresis and Energy Loss. | Mr.
Jayanta
Deka | 8 | September | From 1/9/21 to 9/9/21 | |--|---|-----------------------------|---|-----------|-------------------------| | Unit IV: Dielectric Properties of Materials | Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin- Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons, T ₀ modes. | Dr.
Chandrama
Kalita, | 8 | September | From 10/9/21 to 20/9/21 | | Unit V:
Ferroelectric
Properties of
Materials | Structural phase transition, Classification of | Dr. Utpala
Baishya , | 6 | September | From 21/9/21 to 30/9/21 | | | crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop. | | | | | |---|--|-----------------------------|----|----------------------------|--------------------------| | Unit VI: Free Electron Theory of Metals | Electrical and thermal conductivity of metals, Wiedemann-Franz law. Elementary band theory: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (4-probe method) & Hall coefficient. | Mr.
Jayanta
Deka | 12 | October | From 1/10/21 to 25/10/21 | | Unit VII:
Superconductivity | Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Super- conductors, London's Equation | Dr.
Chandrama
Kalita, | 6 | October
and
November | From 26/10/21 to 1/11/21 | | | and Demokratic | 1 | <u> </u> | | <u> </u> | |-----|--|------------|----------|----------|----------| | | and Penetration | | | | | | | Depth. Isotope | | | | | | | effect. Idea of BCS | | | | | | | theory (No | | | | | | | derivation). | | | | | | | acii (attori). | | | | | | 7 1 | | | 1.5 | | | | Lab | A minimum of five | Dr. | 15 | November | From | | | experiments to be | Chandrama | | | 2/11/21 | | | done. | Kalita, | | | to | | | 1. Measurement of | . | | | 25/11/21 | | | susceptibility of | Dr. Utpala | | | | | | paramagnetic | Baishya, | | | | | | solution (Quinck's Tube Method). | 3.6 | | | | | | 2. To measure the | Mr. | | | | | | Magnetic | Jayanta | | | | | | susceptibility of | Deka | | | | | | Solids. | | | | | | | 3. To determine the | | | | | | | Coupling Coeffcient | | | | | | | of a Piezoelectric | | | | | | | crystal. | | | | | | | 4. To measure the | | | | | | | Dielectric Constant | | | | | | | of a dielectric | | | | | | | Materials with | | | | | | | frequency. | | | | | | | 5. To determine the | | | | | | | complex dielectric | | | | | | | constant and plasma frequency of metal | | | | | | | using Surface | | | | | | | Plasmon resonance | | | | | | | (SPR). | | | | | | | 6. To determine the | | | | | | | refractive index of a | | | | | | | dielectric layer using | | | | | | | SPR. | | | | | | | 7. To study the PE | | | | | | | Hysteresis loop of a | | | | | | | Ferroelectric Crystal. | | | | | | | 8. To draw the B – H | | | | | | | curve of Fe using | | | | | | | Solenoid & | | | | | | | determine energy | | | | | | | loss from Hysteresis. | | | | | | | 9. To measure the | | | | | | with temperature by four-probe method (room temperature to 150 °C) and to determine its band gap. 10. To determine the Hall coeffcient of a semiconductor sample. | |--| |--| | Department | Physics | Semester | Fifth semester | |------------|----------------------------|----------|----------------| | Subject | Experimental
Techniques | Credit | 6 | | Course | | Paper No | PHY-HE-5016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |-------------------------|--|-----------------------------|-------|--------|------------------------| | Unit I:
Measurements | Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chi- | Dr.
Chandrama
Kalita, | 7 | August | From 1/8/21 to 13/8/21 | | | square) and curve fitting. | | | | | |---|---|-----------------------------|----|----------------------------|-------------------------| | Unit II:
Signals and
Systems | Periodic and aperiodic signals. Impulse response, transfer function and frequency response of first and second order systems. Fluctuations and Noise in measurement system. S/N ratio and Noise figure. Noise in frequency domain. Sources of Noise: Inherent fluctuations, Thermal noise, Shot noise, 1/f noise. | Dr.
Chandrama
Kalita, | 7 | August | From 14/8/21 to 25/8/21 | | Unit III:
Shielding and
Grounding | Unit IV: Transducers & industrial instrumentation (working Methods of safety grounding. Energy coupling. Grounding. Shielding:Electrostatic shielding. Electromagnetic Interference Shielding. | Dr. Utpala
Baishya , | 4 | August
and
September | From 26/8/21 to 1/9/21 | | Unit IV:
principle,
efficiency,
applications | Static and dynamic characteristics of measurement Systems. Generalized performance of systems, Zero order first order, second order and higher order systems. Electrical, Thermal and Mechanical systems. | Dr. Utpala
Baishya , | 21 | September | From 2/9/21 to 30/9/21 | | | Calibration. Transducers and sensors. Characteristics of Transducers. Transducers as electrical element and their signal conditioning. Temperature transducers: RTD, Thermistor, Thermocouples, Semiconductor type temperature sensors (AD590, LM35, LM75) and signal conditioning. Linear Position transducer: Strain gauge, Piezoelectric. Inductance change transducer: Linear variable differential transformer (LVDT), Capacitance change transducers. | | | | | |---|---|---------------------|----|----------------------------|---------------------------| | Unit V:
Digital
Multimeter | Comparison of analog and digital instruments. Block diagram of digital multimeter, principle of measurement of I, V, C. Accuracy and resolution of measurement. | Mr. Jayanta
Deka | 5 | October | From 1/10/21 to 21/10/21 | | Unit VI:
Impedance
Bridges and
Q-meter | Block diagram and working principles of RLC bridge. Qmeter and its working operation. Digital LCR bridge. | Mr. Jayanta
Deka | 4 | October | From 22/10/21 to 27/10/21 | | Unit VII:
Vacuum
Systems | Characteristics of vacuum: Gas law, Mean free path. Application of | Mr. Jayanta
Deka | 12 | October
and
November | From 28/10/21 to | | Lab | vacuum. Vacuum system-Chamber, Mechanical pumps, Diffusion pump & Turbo Modular pump, Pumping speed, Pressure gauges (Pirani, Penning, ionization). | D | 20 | Name | 12/11/21
From | |-----
---|---|----|----------|----------------------------| | | (Minimum number of experiments to be completed is seven) 1. Determine output characteristics of a LVDT & measure displacement using LVDT 2. Measurement of Strain using Strain Gauge. 3. Measurement of level using capacitive transducer. 4. To study the characteristics of a Thermostat and determine its parameters. 5. Study of distance measurement using ultrasonic transducer. 6. Calibrate Semiconductor type temperature sensor (AD590, LM35, or LM75) 7. To measure the change in temperature of ambient using Resistance Temperature Device (RTD). 8. Create vacuum in a small chamber using a mechanical | Dr. Chandrama Kalita, Dr. Utpala Baishya , Mr. Jayanta Deka | 20 | November | 13/11/21
to
30/11/21 | | (rotary) pump and | | |--|--| | measure the | | | chamber pressure | | | using a pressure | | | gauge. | | | 9. Comparison of | | | pickup of noise in | | | cables of different | | | types (co-axial, | | | single shielded, | | | double shielded, | | | without shielding) | | | of 2m length, | | | understanding of | | | importance of | | | grounding using | | | function generator | | | of mV level & an | | | oscilloscope. | | | 10. To design and study the Sample and Hold Circuit. | | | 11. Design and analyze | | | the Clippers and | | | Clampers circuits | | | using junction diode | | | 12. To plot the frequency response of a | | | microphone. | | | 13. To measure Q of a coil | | | and influence of | | | frequency, using a Q- | | | meter | | | | | #### SBMS COLLEGE, SUALKUCHI Session: 2021-22 (August –December) | Department | Physics | Semester | Fifth semester | |------------|---------------------------------|----------|----------------| | Subject | Nuclear and
Particle Physics | Credit | 6 | | Course | | Paper No | PHY-HE-5056 | | Remarks | | Marks | 100 | | Course content | Allotted to | Hours | Months | Date | |--|--|--|--|---| | Constituents of nucleus | Dr. | 10 | August | From | | and their Intrinsic | Chandrama | | | 1/8/21 | | properties, quantitative | Kalita, | | | to
13/8/21 | | facts about mass, radii, | | | | 13/8/21 | | • , | , and the second se | | | | | | · · | | | | | | 23 | | | | | | • | | | | | | | | | | | | | | | | | | moments, nuclear excites | | | | | | states. | | | | | | | | | | | | = = | * | 12 | August | From | | 11 | | | | 14/8/21
to | | | Kalita, | | | 31/8/21 | | | | | | 31/0/21 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | \ | | | | | | S , | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 9 , | | | | | | | | | | | | | Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites | Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states. Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, | Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states. Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, | Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moments, nuclear excites states. Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, | | | basic assumption of shell
model, concept of mean
field, residual
interaction, concept of
nuclear force. | | | | | |--|---|-------------------------|----|--------------------------|----------------------------------| | Unit III:
Radioactivity
decay | (a) Alpha decay: basics of α-decay processes, theory of α- emission, Gamow factor, Geiger Nuttall law, α-decay spectroscopy. (b) -decay: energy kinematics for decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion. | Dr. Utpala
Baishya, | 10 | September | From 1/9/21 to 14/9/21 | | Unit IV:
Nuclear
Reactions | Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering). | Dr. Utpala
Baishya , | 8 | September | From
15/9/21
to
24/9/21 | | Unit V:
Interaction of
Nuclear
Radiation
with matter | Energy loss due to ionization (Bethe- Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter. | Mr.
Jayanta
Deka | 8 | September
and October | From 25/9/21 to 8/10/21 | | Unit VI:
Detector for
Nuclear
Radiations | Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic
principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector. | Mr.
Jayanta
Deka | 8 | October | From 9/10/21 to 29/10/21 | |---|--|------------------------|----|-------------------------|--------------------------| | Unit VII:
Particle
Accelerators | Accelerator facility available in India: Van- de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons. | Dr. Utpala
Baishya, | 5 | October and
November | From 30/10/21 to 5/11/21 | | Unit VIII:
Particle
physics | Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons. | Mr.
Jayanta
Deka | 14 | November | From 6/11/21 to 25/11/21 | Session: 2021-22 (August –December) | Department | Physics | Semester | Fifth semester | |------------|------------------------|----------|----------------| | Subject | WEATHER
FORECASTING | Credit | 4 | | Course | | Paper No | PHY-SE-5014 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|--|-----------------------------|-------|----------------------------|------------------------| | Unit I:
Introduction
to
atmosphere | Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; atmospheric pressure: its measurement; atmospheric boundary layer and its characteristics; atmospheric convection and inversion; introduction to numerical weather prediction systems. | Dr.
Chandrama
Kalita, | 9 | August | From 1/8/21 to 20/8/21 | | Unit II:
Measuring
the weather | Wind; forces acting to produce wind; measurement of wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws. | Dr. Utpala
Baishya , | 4 | August
and
September | From 21/8/21 to 1/9/21 | | Unit III:
Weather | Global wind systems; air masses and fronts: | Dr. Utpala | 3 | September | From 2/9/21 | | systems | classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes, Indian summer monsoon. | Baishya, | | | to
10/9/21 | |--|---|---|---|-----------------------------|----------------------------------| | Unit IV:
Climate and
Climate
Change | Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate. | Dr. Utpala
Baishya , | 6 | September | From
11/9/21
to
20/9/21 | | Unit V:
Basics of
weather
forecasting | Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts. | Mr.
Jayanta
Deka | 8 | September
and
October | From 21/9/21 to 21/10/21 | | Lab | Study of synoptic charts & weather reports, working, principle of weather station. Processing and analysis of weather data (a) To calculate the sunniest time of the year. (b) To study the variation of rainfall amount and intensity by wind direction. (c) To observe the sunniest/driest day of the week. | Dr. Chandrama Kalita, Dr. Utpala Baishya , Mr. Jayanta Deka | 8 | October
and
November | From 22/10/21 to 15/11/21 | | | (d) To examine the | |---|---| | | maximum and | | | minimum temperature | | | throughout the year. | | | (e) To evaluate the relative | | | humidity of the day. | | | (f) To examine the rainfall | | | amount month wise. | | | 2. Exercises in chart | | | reading: Plotting of | | | constant pressure | | | charts, surfaces charts, | | | upper wind charts and | | | its analysis. | | | 3. Formats and elements in different types of weather | | | forecasts/ warning (both aviation and non aviation) | | 1 | | | Department | Physics | Semester | Second semester | |------------|-------------------------|----------|-----------------| | Subject | Electricity & Magnetism | Credit | 6 | | Course | | Paper No | PHY-HC-2016 | | Remarks | | Marks | 100 | | Unit | Course conent | Allotted to | Hours | Month | Date | |---|---|-----------------------------|-------|----------------------------|-------------------------| | Unit I: Electric Field and Electric Potential | Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Unique- ness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. | Dr.
Chandrama
Kalita, | 26 | January
and
February | From 20/1/22 to 14/2/22 | | Unit II:
Dielectric | Electric Field in matter. Polarization, Polarization | Dr. Utpala
Baishya , | 8 | February
And | From
15/2/22 | | Properties
of Matter
(Lectures | Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D→. Relations between E→, P→ and D→Gauss' Law in dielectrics. | | | March | to
2/3/22 | |---|--|------------------------------|---|--------------------|----------------------------------| | Unit III:
Magnetic
Field | Magnetic Force on a point charge, definition and properties of magnetic field B→. Curl and Divergence. Vector potential A→. Magnetic Force on (1) a current carrying wire (2) between current elements. Torque on a current loop in a uniform magnetic field. Biot-Savart's law and its simple application: straight wire and circular loop. Current loop as a magnetic dipole and its dipole moment (analogy with electric dipole) Ampere's circuital law and its application to (1) Solenoid (2) Torus. | Dr. Utpala
Baishya , | 9 | March | From 3/3/22 to 16/3/22 | | Unit IV:
Magnetic
Properties
of Matter | Magnetization vector (M̄). Magnetic Intensity (H→). Magnetic Susceptibility and permeability. Relation between B→, H→, Mħ. Ferromagnetism. B-H curve and hysteresis. | ,
Dr. Utpala
Baishya , | 4 | March | From
17/3/22
to
24/3/22 | | Unit V:
Electroma
gnetic
Induction | Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity | Mr. Jayanta
Deka | 6 | March
and April | From 25/3/22
to 5/4/22 | | | Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current. | | | | | |---|---|--|----|------------------|----------------------------------| | Unit VI:
Electrical
Circuits | AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) 13 Quality Factor, and (4) Band Width. Parallel LCR Circuit. | Mr. Jayanta
Deka | 4 | April | From 6/4/22 to 11/4/22 | | Unit VII:
Network
Theorems | Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits. | Mr. Jayanta
Deka | 3 | April | From
12/4/22
to
20/4/22 | | Unit VIII:
Ballistic
Galvanom
eter | Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR. | Dr. Utpala
Baishya , | 3 | April | From 21/4/22 to 27/4/22 | | Lab | A minimum of seven experiments to be done. 31. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses. 32. To study the characteristics of a series RC | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr. Jayanta
Deka | 14 | April and
May | From 28/4/22 to 20/5/22 | | Circuit. | | | |--|--|---| | To determine an unknown Low Resistance using Potentiometer. | | | | To determine an unknown Low Resistance using Carey Foster's Bridge. | | | | To compare capacitances using De' Sauty's bridge. | | | | 36. Measurement of field strength B→ and its variation in a solenoid (determine dB). | | _ | | To verify the Thevenin and Norton theorems. | | | | 38. To verify the Superposition, and Maximum power transfer theorems. | | | | To determine self inductance of a coil by Anderson's bridge. | | | | 40. To study response curve | | | | of a Series LCR circuit | | | | and determine its (a) | | | | Resonant frequency, (b) Impedance at | | | | resonance, (c) Quality | | | | factor Q, and (d) Band | | | | width. | | | | 41. To study the response | | | | curve of a parallel LCR | | | | circuit and determine its | | | | (a) Anti- resonant | | | | frequency and (b) | | | | Quality factor Q. | | | | 42. Measurement of charge and | | | | current sensitivity and CDR | | | | of Ballistic Galvanometer. | | | | 43. Determine a high resistance by leakage method using Ballistic Galvanometer. | | | |---|--|--| | 44. To determine self-inductance of a coil by Rayleigh's method. | | | | 45. To determine the mutual inductance of two coils by Absolute method. | | | | Department | Physics | Semester | Second semester | |------------|----------------|----------|-----------------| | Subject | Waves & Optics | Credit | 6 | | Course | | Paper No | PHY-HC-2026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|-----------------------------|-------|----------------------------|-------------------------| | Unit I:
Superposition
of Collinear
Harmonic
Oscillations | Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences. | Dr.
Chandrama
Kalita, | 5 | January | From 20/1/22 to 28/1/22 | | Unit II: Superposition of Two Perpendicular | Graphical and Analytical
Methods. Lissajous
Figures with equal an
unequal frequency and | Dr.
Chandrama
Kalita, | 2 | January
And
February | From 29/1/22 to 1/2/22 | | Harmonic
Oscillations | their uses. | | | | | |---|--|-----------------------------|---|----------|----------------------------------| | Unit III: Wave Motion | Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. | Dr.
Chandrama
Kalita, | 4 | February | From 2/2/22 to8/2/22 | | Unit IV:
Velocity of
Waves | Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction. | Dr.
Chandrama
Kalita, | 6 | February | From 9/2/22 to17/2/22 | | Unit V:
Superposition
of Two
Harmonic
Waves | Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck | Dr. Utpala
Baishya , | 7 | February | From
18/2/22
to
28/2/22 | | | Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. Superposition of N Harmonic Waves. | | | | | |------------------------------|---|------------------------------|---|-------|--------------------------| | Unit VI:
Wave Optics | Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. | ,
Dr. Utpala
Baishya , | 3 | March | From 2/3/22
To 8/3/22 | | Unit VII:
Interference | Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index. | Dr. Utpala
Baishya , | 9 | March | From 9/3/22 to 21/3/22 | | Unit VIII:
Interferometer | Michelson Interferometer-
(1) Idea of form of
fringes (No theory
required), (2) | Mr. Jayanta
Deka | 4 | March | From 22/3/22 to 28/3/22 | | | Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, (5) Visibility of fringes. Fabry-Perot interferometer. | | | | | |--------------------------------------|---|--------------------------|----|-----------------------|----------------------------------| | Unit IX:
Diffraction | Fresnel and Fraunhofer diffraction. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel diffraction pattern of a straight edge and at a circular aperture . Resolving Power of a telescope. | ,
Mr. Jayanta
Deka | 9 | March
and
April | From 29/3/22 to 11/4/22 | | Unit X:
Fraunhofer
Diffraction | Single slit. Double slit. Multiple slits. Diffraction grating. Resolving power of grating. | Mr. Jayanta
Deka | 8 | April | From
12/4/22
to
28/4/22 | | Unit XI:
Holography | Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves. Point source holograms. | Mr. Jayanta
Deka | 3 | April
and May | From 29/4/22 to 3/5/22 | | Lab | A minimum of seven | Dr. | 16 | May | From | | experiments to be done. | Chandrama | 4/5/22 | |---------------------------|-------------------------|---------| | - | Kalita, | to | | 1. To determine the | | 25/5/22 | | frequency of an electric | Dr. Utpala
Baishya , | | | tuning fork by Melde's | baisilya, | | | experiment and verify | Mr. Jayanta | | | $\lambda 2 - T law$. | Deka | | | 2. To study Lissajous | | | | Figures. | | | | 3. Familiarization with: | | | | Schuster's focusing, | | | | determination of angle | | | | of prism. | | | | 4. To determine | | | | refractive index of the | | | | Material of a prism | | | | using sodium source. | | | | 5. To determine the | | | | dispersive power and | | | | Cauchy constants of the | | | | material of a prism | | | | using mercury source. | | | | 6. To determine | | | | wavelength of sodium | | | | light using Fresnel | | | |
Biprism. | | | | 7. To determine | | | | wavelength of sodium | | | | light using Newton's | | | | Rings. | | | | 8. To determine the | | | | thickness of a thin paper | | | | by measuring the width | | | | of the interference | | | | fringes produced by a | | | | wedge-shaped Film. | | | | • • | | | | 9. To determine | | | | wavelength of (1) Na | | | | source and (2) spectral | | | | lines of Hg source using | |----------------------------| | plane diffraction grating. | | 10. To determine | | dispersive power and | | resolving power of a | | plane diffraction grating. | | | | Department | Physics | Semester | Second semester | |------------|-------------------------|----------|--------------------| | Subject | Electricity & Magnetism | Credit | 6 | | Course | | Paper No | PHY-HG/RC-
2016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--------------------------------|---|------------------------------|-------|----------------------------|------------------------| | Unit I :
Vector
Analysis | Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). | Dr.
Chandrama
Kalita, | 12 | January
and
February | From 20/1/22 to 6/2/22 | | Unit II:
Electrostatics | Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications | ,
Dr. Utpala
Baishya , | 22 | February
and
March | From 7/2/22 to 7/3/22 | | | of Gauss theorem – Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. | | | | | |------------------------|--|-----------------------------|----|-------|------------------------| | Unit III:
Magnetism | Magnetostatics: Biot-Savart's law & its applications — straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia, para, and ferro-magnetic materials. | Dr.
Chandrama
Kalita, | 10 | March | From 8/3/22 to 21/3/22 | | Unit IV :
Electromagne
tic Induction | Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field. | Mr. Jayanta
Deka | 6 | March | From 22/3/22 to 31/3/22 | |--|---|--|----|---------------|-------------------------| | Unit V: Maxwell's Equations and EM Wave | Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. | ,
Mr. Jayanta
Deka | 10 | April | From 2/4/22 to 19/4/22 | | Lab | for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses. 22. Ballistic Galvanometer (a) Measurement of charge and current sensitivity (b) Measurement of CDR (c) Determine a high resistance by Leakage Method (d) To determine Self Inductance of a Coil by Rayleigh's Method. 23. To compare capacitances using De'Sauty's bridge. | Dr. Chandrama Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka | 14 | April and May | From 20/4/23 to 16/5/23 | | 24. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx). | | | |--|---|---| | 25. To study the Characteristics of a Series RC Circuit. | | | | 26. To study the a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor | | | | LCR circuit and determine its (a) Antiresonant frequency and (b) Quality factor Q. | | | | 28. To determine a Low
Resistance by Carey
Foster's Bridge. | | | | 29. To verify the Thevenin and Norton theorem. | | | | 30. To verify the Superposition, and Maximum Power Transfer Theorem. | | | | I control of the cont | • | 1 | | Department | Physics | Semester | Fourth semester | |------------|--------------------------|----------|-----------------| | Subject | Mathematical Physics III | Credit | 6 | | Course | | Paper No | PHY-HC-4016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|--|-------------------------|-------|----------------------------|----------------------------------| | Unit I:
Complex
Analysis | Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity. | Dr. Utpala
Baishya , | 10 | January
and
February | From 20/1/22 to 10/2/22 | | Unit II:
Comple
x
Integrati
on | Integration of a function of a complex variable. Cauchys Integral formula. Simply and multiply connected region. Laurent and Taylors expansion. Residues and Residue Theorem with numerical application. | Dr. Utpala
Baishya , | 10 | February | From
11/2/22
to
24/2/22 | | Unit III:
Fourier
Transfor
ms | Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier trans- form of trigonometric, Gaussian functions Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, | Dr. Utpala
Baishya , | 15 | February
and
March | From 25/2/22 to 21/3/22 | | | Convolution theorem (Statement only). Properties of Fourier transforms (translation, change of scale, complex conjugation). | | | | |
---------------------------------------|---|-------------------------|----|--------------------|----------------------------------| | Unit IV:
Laplace
Transfor
ms | Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem (Statement only). Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations: Damped Harmonic Oscillator. | Dr. Utpala
Baishya , | 15 | March
and April | From 22/3/22 to 11/4/22 | | Unit V:
Tensor
Algebra | Introduction to tensor, Transformation of co-ordinates, Einsteins summation convention. contravariant and co- variant tensor, tensorial character of physical quantities, symmetric and antisymmetric tensors, kronecker delta, Levi- Civita tensor. Quotient law of tensors, Raising and lowering of indices Rules for combination of tensors- addition, subtraction, outer multiplication, contraction and inner multiplications. | Dr. Utpala
Baishya , | 10 | April | From
12/4/22
to
28/4/22 | | Lab | 12. Solve differential equations $\frac{dy}{dx} = e^x \text{ with } y = o \text{ and } x$ $= 0$ | Dr. Utpala
Baishya , | 15 | April and
May | From 29/4/22 to 20/5/22 | | $\frac{dy}{dx} + e^{-x}y = x^2 \frac{d^2y}{dx^2} + 2\frac{dy}{dx}$ $= -y$ | | |---|--| | $\frac{d^2y}{dx^2} + e^{-t}\frac{dy}{dx} = -y$ | | | 13. Dirac Delta Function
Evaluate the integral I $\frac{1}{\sqrt{2\pi}a^2} \int exp\left[\frac{(x-2)^2}{2a^2}\right](x+3)dx$ | | | 14. Fourier Series Make a program to evaluate | | | $\sum_{n=1}^{a} (0.2)^n$ | | | Evaluate the Fourier coefficients of a given periodic function (square wave) | | | 15. Frobenius method and special | | | Function evaluate $\int_{-1}^{1} P_n(x) P_m(x) dx = d_{n,m}$ | | | Plot $P_n(x)$, $jv(x)$ and show the recursion relation | | | 16. Calculation of error for each data point | | | of observations recorded in experiments | | | done in previous semesters (choose any two) | | | 17.Calculation of least | | | square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer | | |--|--| | weightage to error. Confirmation of least square fitting of data | | | Confirmation of least square fitting of data | | | square fitting of data | | | | | | through computer | | | | | | program. | | | 18. Evaluation of | | | trigonometric | | | functions e.g. sinθ, | | | ,given | | | Bessel'sfunctionat | | | N points find its | | | value at an | | | intermediate point. | | | 19. Integrate | | | 1 | | | $\overline{(x^2+2)}$ | | | Numerically in a | | | given interval. | | | | | | | | | of unity for n=2, 3, and 4. | | | 21. Find the two square roots of $5+12j$. | | | Integral transform | | | Evaluate FFT of | | | e^{-x^2} | | | 22. Solve Kirchoff's | | | | | | current law for any | | | node of an arbitrary | | | circuit using | | | Laplace's transform. | | | | | | Department | Physics | Semester | Fourth semester | |------------|-------------------------------|----------|-----------------| | Subject | | Credit | 6 | | | Elements of Modern
Physics | | | | Course | | Paper No | PHY-HC-4026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|---------------------|-------|----------------------------|----------------------------------| | Unit I:
Quantum
Theory and
Blackbody
Radiation | Quantum theory of light; photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. group and phase velocities and relation between them. Two-slit experiment with electrons. Probability. wave amplitude and wave functions. | Mr. Jayanta
Deka | 12 | January
and
February | From 20/1/22 to 9/2/22 | | Unit II: Uncertainty and Wave- Particle Duality | Position measurement : gamma ray microscope thought experiment; wave- particle duality, Heisenberg uncertainty principle | Mr. Jayanta
Deka | 5 | February | From
10/2/22
to
17/2/22 | | | (Uncertainty relations involving Canonical pair of variables): Derivation from wave packets, impossibility of a particle following a trajectory; estimating minimum energy of a confined particle using uncertainty principle; energy-time uncertainty principle- application to virtual particles and range of an interaction. | | | | | |--|---|---------------------|---|---------------------|----------------------------------| | Unit III:
Schrödinger
Equation | Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrödinger equation for non- relativistic particles; expectation value, momentum and energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; probability and probability current densities in one dimension. | Mr. Jayanta
Deka | 8 | February | From
18/2/22
to
27/2/22 | | Unit IV:
One-
dimensional
Box and
Step Barrier | One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; quantum dot as example; quantum | Mr. Jayanta
Deka | 9 | February
& March | From 28/2/22 to 10/3/22 | | Unit V: | mechanical scattering and tunnelling in one dimensionacross a step potential and rectangular potential barrier. Size and structure of atomic | Mr. Jayanta | 6 | March | From | |---|---|---------------------|---|--------------------|--------------------------| | Structure of
the Atomic
Nucleus | nucleus and its relation with atomic weight; impossibility of an electron being in liquid drop model: semi-empirical mass formula and binding energy, nuclear shell model (qualitative discussions) and magic numbers. | Deka | | | 11/3/22
to
21/3/22 | | Unit VI:
Radioactivity | Stability curve and stability of nuclei, Law of radioactive decay, disintegration constant, half life and mean life. Activity unit. Alpha decay – Range energy relation, Fine structure of alpha energy spectrum. Beta decay energy released, continuous beta spectrum and Pauli's prediction of neutrino. Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus. | Mr. Jayanta
Deka | 8 | March
and April | From 22/3/22 to 4/4/22 | | Unit VII:
Detection of
nuclear
radiation | Method of energy loss by charged particles and gamma photons. Photoelectric, Compton and Pairproduction processes Gas filled detectors – principle and construction of a gas filled detector, Ionization, | Mr. Jayanta
Deka | 4 | April | From 5/4/22 to 8/4/22 | | | proportional, GM and spark region. | | | | | |-------------------------------------|---|---------------------|----|------------------|----------------------------------| | Unit VIII:
Fission and
Fusion | Energy consideration in Nuclear Reaction, Q-value of nuclear reaction, Mass deficit, Einstein's mass-energy equivalence principle and generation of nuclear energy. Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235. Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions). | Mr. Jayanta
Deka | 4 | April | From 9/4/22 to 18/4/22 | | Unit IX:
Lasers | Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions.
Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. Basic lasing. | Mr. Jayanta
Deka | 4 | April | From
19/4/22
to
26/4/22 | | Lab | A minimum of six experiments to be done. 14. Measurement of Planck's constant using black body radiation and photo-detector. 15.Photo-electric effect Photo current versus intensity and wavelength of light; | Mr. Jayanta
Deka | 16 | April and
May | From 27/4/23 to 25/5/23 | | |
 | |---|------| | maximum energy of | | | photo-electrons | | | versus frequency of | | | light. | | | 16. To determine work function of material of filament of directly heated vacuum diode. | | | 17.To determine the Planck's constant using LEDs of at least 4 different colours. | | | 18. To determine the wavelength of $H-\alpha$ emission line of hydrogen atom. | | | 19. To determine the ionization potential of mercury. | | | 20. To determine the absorption lines in the rotational spectrum of iodine vapour. | | | 21. To determine the value of e/m by (a) magnetic focusing or (b) bar magnet. | | | 22. To setup the Millikan oil drop apparatus and determine the charge of an electron. | | | 23. To show the tunneling effect in tunnel diode using I – V characteristics. | | | 24. To determine the wavelength of laser source using diffraction of single slit. | | | 25. To determine the wavelength of laser | | | source using diffraction of double slits. | | | |--|--|--| | 26. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating. | | | | Department | Physics | Semester | Fourth semester | |------------|-------------------------------|----------|-----------------| | Subject | Analog Systems & Applications | Credit | 6 | | Course | | Paper No | PHY-HC-4036 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |------------------------------------|--|-----------------------------|-------|----------------------------|------------------------| | Unit I:
Semiconductor
Diodes | P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift | Dr.
Chandrama
Kalita, | 10 | January
and
February | From 20/1/22 to 7/2/22 | | | Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. Current flow mechanism in Forward and Reverse Biased Diode. | | | | | |--|---|-----------------------------|----|--------------------------|----------------------------------| | Unit II: Two-terminal Devices and their Applications | (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell. | Dr.
Chandrama
Kalita, | 6 | February | From 8/2/22 to 14/2/22 | | Unit III:
Bipolar
Junction
Transistors | $n-p-n$ and $p-n-p$ Transistors. Characteristics of CB, CEand CC Configurations. Current gains α and β . Relations between α and β . Load Line analysis of Transistors. DC Load line and Q -point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. | Dr.
Chandrama
Kalita, | 6 | February | From
15/2/22
to
23/2/22 | | Unit IV:
Amplifiers | Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. <i>h</i> - parameter Equivalent Circuit. Analysis of a single-stage CE | Dr.
Chandrama
Kalita, | 10 | February
and
March | From 24/2/22 to 10/3/22 | | | amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class <i>A</i> , <i>B</i> & <i>C</i> Amplifiers. | | | | | |--|--|-----------------------------|---|------------------|-------------------------| | Unit V:
Coupled
Amplifier | Two stage RC-coupled amplifier and its frequency response. | Dr.
Chandrama
Kalita, | 4 | March | From 11/3/22 to 25/3/22 | | Unit VI:
Feedback in
Amplifiers | Effects of Positive and
Negative Feedback on Input
Impedance, Output
Impedance, Gain, Stability,
Distortion and Noise. | Dr.
Chandrama
Kalita, | 4 | March | From 26/3/22 to 31/3/22 | | Unit VII:
Sinusoidal
Oscillators | Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. | Dr.
Chandrama
Kalita, | 4 | April | From 1/4/22 to 6/4/22 | | Unit VIII:
Operational
Amplifiers
(Black Box
approach) | Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. | Dr.
Chandrama
Kalita, | 9 | April | From 7/4/22 to 22/4/22 | | Unit IX:
Applications
of Op-Amps | (2) Inverting and non-
inverting amplifiers, (2)
Adder, (3) Subtractor, (4)
Differentiator, (5) | Dr.
Chandrama
Kalita, | 9 | April
and May | From 23/4/22 to 5/5/22 | | Unit X:
Convversion | Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator. Resistive network (Weighted and R – 2R Ladder). Accuracy and Resolution. | Dr.
Chandrama
Kalita, | 3 | May | From 6/5/22 to 10/5/22 | |------------------------|--|-----------------------------|---|-----|-------------------------| | | A/D Conversion (successive approximation). | | | | | | Lab | A minimum of eight experiments to be done. 1. To study V – I characteristics of PN junction diode, and Light emitting diode. 2. To study the V – I characteristics of a Zener diode and its use as voltage regulator. 3. Study of V – I & power curves of solar cells, and find maximum power point & effciency. 4. To study the characteristics of a Bipolar Junction Transistor in CE configuration. 5. To study the various biasing configurations of BJT for normal class A operation. 6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. 7. To study the frequency response of voltage gain of a RC-coupled | Dr.
Chandrama
Kalita, | 9 | May | From 11/5/22 to 25/5/22 | | transistor amplifier. | |---| | 8. To design a Wien | | bridge oscillator for | | given frequency using | | an op-amp. | | 9. To design a phase shift | | oscillator of given | | specifications using | | BJT. | | 10. To study the Colpitt's | | oscillator. | | 11. To design a digital to | | analog converter | | (DAC) of given | | specifications. | | 12. To study the analog to | | digital convertor | | (ADC) IC. | | 13. To design an inverting | | amplifier using Op-amp | | (741/351) for dc | | voltage of given gain . | | 14. To design inverting | | amplifier using Op-amp | | (741/351) and study its | | frequency response. | | 15. To design non- | | inverting amplifier | | using Op-amp | | (741/351) & study its | | frequency response. | | 16. To study the zero- | | crossing detector and | | comparator. | | 17. To add two dc voltages | | using Op-amp in inverting and non- | | inverting and non- | | 18. To design a precision | | Differential amplifier | | of given I/O | | specification using Op- | | | | | | | | specification using Op-
amp. 19. To investigate the use
of an op-amp as an | | Integrator. | | | |--|--|--| | 20. To investigate the use of an op-amp as a Differentiator. | | | | Department | Physics | Semester | Fourth semester | |------------|----------------|----------|-----------------| | Subject | | Credit | 6 | | | Waves & Optics | | | | | | | | | Course | | Paper No | | | | | | PHY-HG/RC- | | | | | 4016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted
to | Hours | Month | Date | |--
--|---------------------------------|-------|----------------------------|-------------------------| | Unit I:
Superpositio
n of Two
Collinear
Harmonic
Oscillations | Linearity & Superposition Principle. (1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats). | Dr.
Chandra
ma
Kalita, | 4 | January | From 20/1/22 to 27/1/22 | | Unit II:
Superpositio
n of Two
Perpendicula
r Harmonic
Oscillations | Graphical and Analytical Methods. Lissajous Figures Dr. Chandrama Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka with equal an unequal frequency and their uses. | Dr.
Chandra
ma
Kalita, | 2 | January
and
February | From 28/1/22 to 1/2/22 | | Unit III:
Waves
Motion | General: Transverse waves on
a string. Travelling and
standing waves on a string.
Normal Modes of a string.
Groupvelocity, Phase
velocity. Plane waves.
Spherical waves, Wave
intensity. | Dr.
Chandra
ma
Kalita, | 7 | February | From 2/2/22 to 10/2/22 | |------------------------------|--|---------------------------------|---|--------------------------|----------------------------------| | Unit IV:
Fluids | Surface Tension: Synclastic and anticlastic surface — Excess of pressure — Application to spherical and cylindrical drops and bubbles — variation of surface tension with temperature — Jaegar's method. Viscosity — Rate flow of liquid in a capillary tube — Poiseuille's formula — Determination of coefficient of viscosity of a liquid — Variations of viscosity of liquid with temperature — lubrication. | Dr.
Chandra
ma
Kalita, | 6 | February | From
11/2/22
to
21/2/22 | | Unit V :
Sound | Simple harmonic motion - forced vibrations and resonance - Fourier's Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine's formula - measurement of reverberation time - Acoustic aspects of halls and auditoria. | Dr.
Utpala
Baishya, | 6 | February
and
March | From 22/2/22 to 2/3/22 | | Unit VI :
Wave Optics | Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle. | Dr.
Utpala
Baishya , | 3 | March | From 3/3/22 to 8/3/22 | |---|--|----------------------------|----|--------------------|-------------------------| | Unit VII:
Interference | Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination and Fringes of equal thickness. Newton's Rings: measurement of wavelength. Michelson's Interferometer: Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength difference, Refractive index Visibility of fringes. | Mr. Dr. Utpala Baishya, | 10 | March | From 9/3/22 to 22/3/22 | | Unit VIII:
Michelson
Interferomete
r | (2) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Refractive Index. (4) Visibility of fringes. | Mr.
Jayanta
Deka | 3 | March | From 23/3/22 to 28/3/22 | | Unit IX :
Diffraction | Fresnel and Fraunhofer diffraction . Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propa- gation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel diffraction pattern of a straight edge and at a circular aperture . Resolving Power of a telescope. | Mr.
Jayanta
Deka | 14 | March
and April | From 29/3/22 to 14/4/22 | | | Fraunhofer diffraction due to a Single slit, Diffraction grating. Resolving power of grating. | | | | | |--------------------------|---|---|----|---------------|----------------------------------| | Unit X :
Polarization | Transverse nature of light waves. Double Refraction, Plane, circular and elliptically polarized light, Production and analysis of polarized light. Retarding plates. | Mr.
Jayanta
Deka | 5 | April | From
13/4/22
to
20/4/22 | | Lab | A minimum of five experiments to be done. 1. To study the variation in liquid column height with diameter of capillary tube and determine the surface tension of the liquid. 2. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde's Experiment and to verify Z ² — T Law. 3. To determine the coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method) 4. To determine the focal length of a convex mirror with the help of convex lens. 5. To determine the refractive index of a liquid | Dr. Chandra ma Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka | 14 | April and May | From 21/4/22 to 17/5/22 | | by using plane mirror and convex lens. 6. To determine the focal length of two lenses and their combination by displacement method . 7. Familiarization with Schuster's focussing; determination of angle of | | | |--|--|--| | prism. 8. To determine the Refractive Index of the Material of a Prism using Sodium Light. 9. To determine wavelength of sodium light using Newton's Rings. | | | | Department | Physics | Semester | Fourth semester | |------------|-----------|----------|-----------------| | Subject | | Credit | 4 | | | Photoshop | | | | Course | | Paper No | PHY-SE-4044 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |------------|-----------------------------|-------------|-------|----------|---------| | Unit I: | Overview of Adobe Photoshop | Dr. | 3 | January | From | | Getting | CC, Features of Adobe | Chandrama | | and | 20/1/22 | | Started | Photoshop CC | Kalita, | | February | То | | with Adobe | • | | | | 10/2/22 | | Photoshop
CC | | | | | | |--|--|---|---|--------------------------|-------------------------------| | Unit II:
Importance
of Adobe
Photoshop
CC | Overview of Tools Used in
Adobe Photoshop CC,
Importance of Adobe
Photoshop CC | Dr.
Chandrama
Kalita, | 5 | February | From
11/2/22
to 21/2/22 | | Unit III:
Working
with
Typography | Typography, Creating
Typographies, Choosing the
Right Font and Color | Dr.
Chandrama
Kalita, | 4 | February | From 22/2/22 to 27/2/22 | | Unit IV:
Working
with Layers
and Images | Cropping a Photo, Resizing Images, Basics of Layers, Creating Layers for Print and Digital Media, Aligning Images within Multiple Layers, Merging Layer Techniques | ,
Dr. Utpala
Baishya , | 6 | February
and
March | From 28/2/22 to 16/3/22 | | Unit V:
Working
with Filters | Photoshop Filters, Smart
Filters, Common Features of
Photoshop Filter | Dr. Utpala
Baishya , | 4 | March | From 17/3/22 to 30/3/22 | | Unit VI: Digital Painting in Adobe Photoshop CC | Working with Brush Tool,
Importance of Using Colors | ,
Mr.
Jayanta
Deka | 4 | March
and April | From 31/3/22 to 17/4/22 | | Unit VII: Masking and File Formats in Adobe Photoshop CC | Introduction to Mask, Creating Vector and Layer Masks, Essential File Formats, Choosing the Right Format for Printand Digital Media | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr.
Jayanta
Deka | 4 | April | From
18/4/22
to 30/4/22 | TEACHING PLAN DEPARTMENT OF PHYSICS ### SBMS COLLEGE, SUALKUCHI Session: 2021-22 (January –June) | Department | Physics | Semester | Six semester | |------------|---------------------------|----------|--------------| | Subject | Electromagnetic
Theory | Credit | 6 | | Course | | Paper No | PHY-HC-6016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date |
---|---|----------------------------|-------|----------------------------|------------------------| | Unit I: Maxwell Equations | Review of Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density. | Dr.
Chandrama
Kalita | 12 | January
and
February | From 20/1/22 to 7/2/22 | | Unit II: EM Wave Propagation in Unbounded Media | Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive | Dr.
Chandrama
Kalita | 10 | February | From 8/2/22 to 21/2/22 | | | index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma, electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. | | | | | |---|--|----------------------------|----|--------------------------|------------------------| | Unit III: EM Wave in Bounded Media | Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence). | Dr.
Chandrama
Kalita | 10 | February
and
March | From 22/2/22 to 7/3/22 | | Unit IV:
Polarization of
Electromagnetic
Waves | Description of Linear,
Circular and Elliptical
Polarization. Propagation
of E.M. Waves in | Dr.
Chandrama
Kalita | 12 | March | From 8/3/22 to 23/3/22 | | | Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized | | | | | |-------------------------------------|---|----------------------------|---|-----------------------|------------------------| | Unit V:
Rotatory
Polarization | Light. Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half-shade polarimeter. (5 Lectures) Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. | Dr.
Chandrama
Kalita | 8 | March
and
April | From 24/3/22 to 5/4/22 | | | Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission. | | | | | |----------------------------|---|----------------------------|---|-------|------------------------| | Unit VI: Optical
Fibres | Numerical Aperture. Step
and Graded Indices
(Definitions Only).
Single and Multiple
Mode Fibres (Concept
and Definition Only). | Dr.
Chandrama
Kalita | 3 | April | From 6/4/22 to 14/4/22 | | Lab | 1. To verify the law of Malus for plane polarized light. | Dr.
Chandrama
Kalita | 16 | April and May | From
15/4/22
to
17/5/22 | |-----|--|----------------------------|----|---------------|----------------------------------| | | 2. To determine the specific rotation of sugar solution using Polarimeter. | | | | 11/3/22 | | | 3. To analyze elliptically polarized Light by using a Babinet's compensator. | | | | | | | 4. To study dependence of radiation on angle for a simple Dipole antenna. | | | | | | | 5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating. 6. To study the reflection, | | | | | | | refraction of microwaves. | | | | | | | 7. To study Polarization and double slit interference in microwaves. | | | | | | | 8. To determine the refractive index of liquid by total internal reflection using Wollaston's air-film. | | | | | | 9. To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian | | | |--|--|--| | eyepiece. 10. To study the polarization of light by reflection and determine the | | | | polarizing angle for air-glass interface. 11. To verify the Stefan's law of radiation and to determine Stefan's | | | | constant. 12. To determine the Boltzmann constant using V – I characteristics of PN junction diode. | | | | Department | Physics | Semester | Six semester | |------------|--------------------------|----------|--------------| | Subject | Statistical
Mechanics | Credit | 6 | | Course | | Paper No | PHY-HC-6026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|---|-----------------------------|-------|----------------------------|----------------------------------| | Unit I:
Classical
Statistics | Macrostate & Microstate, Elementary Concept of Ensemble, Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature. | Dr.
Chandrama
Kalita, | 18 | January
and
February | From 20/1/22 to 11/2/22 | | Unit II:
Classical
Theory of
Radiation | Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's | Dr.
Chandrama
Kalita, | 9 | February | From
12/2/22
to
24/2/22 | | | Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh- Jean's Law. Ultraviolet Catastrophe. | | | | | |--|--|------------------------------|----|--------------------------|-------------------------| | Unit III:
Quantum
Theory of
Radiation | Spectral Distribution of Black Body Radiation. Planck's Quantum Postulates. Planck's Law of Blackbody Radi- ation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh- Jeans Law, (3) Stefan- Boltzmann Law, (4) Wien's Displacement law from Planck's law. | Dr. Utpala
Baishya , | 5 | February
and
March | From 25/2/22 to 3/3/22 | | Unit IV:
Bose-
Einstein
Statistics | B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck's law. | ,
Dr. Utpala
Baishya , | 13 | March | From 4/3/22 to 21/3/22 | | Unit V:
Fermi-
Dirac
Statistics |
Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit. | ,
Mr.
Jayanta
Deka | 15 | March
and
April | From 22/3/22 to 11/4/22 | | Lab | Use C/C++/Scilab/other numerical simulations for solving | Dr. Utpala
Baishya , | 16 | April and May | From 12/4/22 | | the problems based on Statistical | | | to | |---------------------------------------|---------|--|---------| | Mechanics. | Mr. | | 17/5/22 | | Commutational analysis of | Jayanta | | | | 1. Computational analysis of | Deka | | | | the behavior of a collection | | | | | of particles in a box that | | | | | satisfy Newtonian | | | | | mechanics and interact via | | | | | the Lennard-Jones potential, | | | | | varying the total number of | | | | | particles N and the initial | | | | | conditions: | | | | | (a) Study of local number | | | | | density in the equilibrium | | | | | state (i) average; (ii) fluctuations. | | | | | nuctuations. | | | | | (b) Study of transient behaviour | | | | | of the system (approach to | | | | | equilibrium). | | | | | (c) Relationship of large N and | | | | | the arrow of time. | | | | | (d) Computation of the | | | | | velocity distribution | | | | | of particles for the | | | | | system and | | | | | comparison with the | | | | | Maxwellvelocity | | | | | distribution. | | | | | (e) Computation and study of | | | | | mean molecular speed and | | | | | its dependence on particle | | | | | mass. | | | | | (f) Computation of fraction of | | | | | molecules in an ideal gas | | | | | having speed near the most | | | | | probable speed | | | | | 2. Computation of the | | | | | partition function $Z(\beta)$ for | | | | | examples of systems with a | | | | | finite number of single particle levels (e.g., 2 level, 3 level, etc.) and a finite number of non-interacting particles N under Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics: (a) Study of how Z(β), average energy (E), energy fluctuation ΔE, specific heat at constant | | | |---|--|--| | volumeC _P , depend upon the temperature, total number of particles <i>N</i> and the spectrum of single particle states. | | | | (b) Ratios of occupation numbers of various states for the systems considered above. | | | | (c) Computation of physical quantities at large and small temperature T and comparison of various statistics at large and small temperature T . | | | | 3. Plot Planck's law for Black Body radiation and compare it with Raleigh- Jeans Law at high temperature and low temperature. 4. Plot Specific Heat of | | | | Solids (a) Dulong-Petit law, (b) Einstein | | | | distribution function, (c) | | | |---|--|--| | Debye distribution | | | | function for high | | | | temperature and low | | | | temperature and compare | | | | them for these two cases. | | | | 5. Plot the following functions with energy at different temperatures | | | | (a) Maxwell-Boltzmann distribution | | | | (b) Fermi-Dirac distribution | | | | (c) Bose-Einstein distribution | | | | | | | | Department | Physics | Semester | Six semester | |------------|----------------------------|----------|--------------| | Subject | Astronomy and Astrophysics | Credit | 6 | | Course | | Paper No | PHY-HE-6046 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted | Hours | Month | Date | |------|----------------|----------|-------|-------|------| | | | to | | | | | Unit I:
Stellar
properties | Radiant flux and Luminosity, Magnitude scale. Measurement of astronomical quantities: Stellar distances(parallax), Radii, Mass and Effective Temperature. Equilibrium of stars, Gravity and thermodynamics, virial theorem. Stellar spectral classification – Hertzsprung-Russell (HR) diagram. Introductory idea of stellar evolution: white dwarf, neutron stars and black holes. | Dr.
Utpala
Baishya | 15 | January
and
February | From 20/1/22 to 10/2/22 | |---------------------------------------|---|--------------------------|----|----------------------------|-------------------------| | Unit II: The Sun and the solar system | The Sun; properties of photosphere, chromosphere and corona. Solar system's objects: Theory of formation of the solar system (introductory idea only); physical properties of the planets- their distances, atmospheres, asteroid belt, meteorites and the comets – Kuiper belt and the Oort cloud; Introduction to Extra-Solar Planets. | Dr.
Utpala
Baishya | 15 | February
and
March | From 11/2/22 to 7/3/22 | | Unit III:
Positional
Astronomy | Celestial sphere, spherical geometry and celestial coordinates. Concept of time: universal time, solar time, mean solar time, local sidereal time and Julian day. Introduction to constellations (hands on practice in evening sky with small telescopes or laser pointer), ecliptic and diurnal motion of stars. Solar system's objects: rotation, revolution and | Dr.
Utpala
Baishya | 10 | March | From 8/3/22 to 21/3/22 | | | coordinates in the sky. | | | | | |---|---|--------------------------|----|-----------------------|-------------------------| | Unit IV:
Astronomical
Techniques | Introduction to telescopes – telescope size and light gathering power, resolving power, f-number. Different types of optical telescopes (reflecting and refracting). Space telescopes. Concept of virtual observatory, on-line tools in astronomy: SDSS, SkyView, SIMBAD, Aladin, AAVSO database etc. Introduction to photometry, spectroscopy and polarimetry. | Dr.
Utpala
Baishya | 10 | March
and
April | From 22/3/22 to 4/4/22 | | Unit V:
Galaxies | The Milky Way, properties of the galactic centre. Classification of galaxies, Hubble's tuning fork diagram, normal (spiral, elliptical and lenticular) and active galaxies. Black holes in galaxies. | Dr.
Utpala
Baishya | 10 | April | From 5/4/22 to 20/4/22 | | Unit VI:
Large Scale
Structure and
Cosmology | Distance ladder in cosmology,
Cepheid variables. Cosmic
expansion of the universe and
Hubble(- Lemaitre) law. Clusters
of galaxies and dark matter -
virial theorem. Concept of the
Hot Big Bang, Oscillating
Universe, Cosmic Microwave
Background (CMB). | Dr.
Utpala
Baishya | 15 | April
and May | From 22/4/22 to 17/5/22 | | Department | Physics | Semester | Six semester | |------------|---------------------------------------|----------|--------------| | Subject | PHYSICS-DSE:
CLASSICAL
DYNAMICS | Credit | 6 | | Course | | Paper No | PHY-HE-6056 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted | Hours | Month | Date | |--|--|------------------|-------|----------------------------|-------------------------| | Unit I:
Classical
Mechanics of
Point
Particles | Review of Newtonian Mechanics; Application to the motion of a charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field- gyroradius and gyrofrequency, motion in crossed electric and magnetic fields.constraints, Generalized coordinates and velocities, principle of virtual work, D,Alembert's principle,Hamilton'sprinciple, Lagrangian and the Euler-Lagrange equations, one-dimensional examples of the Euler-Lagrange equations- one-dimensional Simple Harmonic Oscillations and falling body in uniform gravity; applications to simple systems such as coupled oscillators Canonical momenta & Hamiltonian. Hamilton's | Mr. Jayanta Deka | 22 | January
and
February | From 20/1/22 to 21/2/22 | | | equations of motion. Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton's equation for Simple Harmonic Oscillations; particle in a central force field-conservation of angular momentum and energy. | | | | | |---
---|------------------------|----|--------------------------|-------------------------| | Unit II:
Small
Amplitude
Oscillations | Minima of potential energy and points of stable equilibrium, expansion of the potential energy around a minimum, small amplitude oscillations about the minimum, normal modes of oscillations example of N identical masses connected in a linear fashion to (N-1) - identical springs. | Mr.
Jayanta
Deka | 10 | February
and
March | From 21/2/22 to 10/3/22 | | Unit III:
Special
Theory of
Relativity | Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time-dilation, length contraction and twin paradox. Four-vectors: space- like, time-like and light-like. Four-velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four-vector perspective. Concept of four-force. Conservation of four-momentum. Relativistic kinematics. Application to two- | Mr.
Jayanta
Deka | 33 | March
and
April | From 11/3/22 to 25/4/22 | | | body decay of an unstable particle. | | | | | |-------------------------------|---|------------------------|----|------------------|-------------------------| | Unit IV:
Fluid
Dynamics | Density ρ and pressure <i>P</i> in a fluid, an element of fluid and its velocity, continuity equation and mass conservation, streamlined motion, laminar flow, Poiseuille's equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number. | Mr.
Jayanta
Deka | 10 | April
and May | From 26/4/22 to 10/5/22 | | Department | Physics | Semester | Six semester | |------------|---|----------|--------------| | Subject | RENEWABLE
ENERGY AND
ENERGY
HARVESTING | Credit | 4 | | Course | | Paper No | PHY-SE-6024 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--------------------------|--|------------------|-------|---------|--------------| | Unit I: Fossil fuels and | Fossil fuels and Nuclear Energy, their limitation, | Dr.
Chandrama | 3 | January | From 20/1/22 | | Alternate
Sources of
energy | need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. | Kalita, | | | to 27/1/22 | |--|---|-----------------------------|---|--------------------------------|------------------------| | Unit II: Solar energy | Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. | Dr.
Chandrama
Kalita, | 6 | January
and
Februar
y | From 28/1/22 to 7/2/22 | | Unit III: Wind
Energy
harvesting | Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind | Dr. Utpala
Baishya , | 3 | Februar
y | From 8/2/22 to 14/2/22 | | | turbines, Power electronic interfaces, and grid interconnection topologies. | | | | | |---|--|-------------------------|---|---------------------------|----------------------------------| | Unit IV: Ocean
Energy | Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. | Dr. Utpala
Baishya, | 3 | Februar
y | From
15/2/22
to
21/2/22 | | Unit V: | Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass. | Dr. Utpala
Baishya , | 2 | Februar
y | From 22/2/22 to 25/2/22 | | Unit VI:
Geothermal
Energy | Geothermal Resources,
Geothermal Technologies. | Dr. Utpala
Baishya , | 2 | Februar
y and
March | From 26/2/22 to 2/3/22 | | Unit VII:
Hydro Energy | Hydropower resources,
hydropower technologies,
environmental impact of
hydro power sources. | Mr. Jayanta
Deka | 2 | March | From 3/3/22 to 7/3/22 | | Unit VIII:
Piezoelectric
Energy
harvesting | Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modelling piezoelectric generators, Piezoelectric energy harvesting applications, Human power. | Mr. Jayanta
Deka | 4 | March | From 8/3/22 to 15/3/22 | | Unit IX: Electromagneti c Energy | Linear generators, physics
mathematical models, recent
applications | ,
Mr. Jayanta
Deka | 2 | March | From 16/3/22 to 25/3/22 | |----------------------------------|--|---|---|-------|-------------------------| | Harvesting Unit X: | Carbon captured technologies, cell, batteries, power consumption | Mr. Jayanta
Deka | 2 | March | From 26/3/22 to 31/3/22 | | Unit XI: | Environmental issues and
Renewable sources of
energy, sustainability. | ,
Mr. Jayanta
Deka | 1 | April | From 1/4/22 to 5/4/22 | | Demonst rations and Experime nts | Demonstration of Training modules on Solar energy, wind energy, etc. Conversion of vibration to voltage using piezoelectric materials Conversion of thermal energy into voltage using thermoelectric modules. | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya ,
Mr. Jayanta
Deka | 6 | April | From 1/4/22 to 20/4/22 | #### TEACHING PLAN #### DEPARTMENT OF PHYSICS ### SBMS COLLEGE, SUALKUCHI Session: 2022-23 (August –December) | Department | Physics | Semester | First semester | |------------|---------------------------|----------|----------------| | Subject | Mathematical
Physics I | Credit | 6 | | Course | | Paper No | PHY-HC-1016 | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted | Hours | Month | Date | |----------|-------------------------------------|----------|-------|--------|-----------| | | | to | | | | | Unit I: | Revision: Properties of vectors | Dr. | 25 | August | From | | Vector | under rotations. Scalar product and | Utpala | | | 1/8/2022 | | Calculus | its invariance under rotations. | Baishya | | | to | | | Vector product, Scalar triple | | | | 31/8/2022 | | | product and their interpretation in | | | | | | | terms of area and volume | | | | | | | respectively. Scalar and Vector | | | | | | | fields. | | | | | | | Vector Differentiation: Directional | | | | | | | derivatives and normal derivative. | | | | | | | Gradient of a scalar field and its | | | | | | | geometrical interpretation. | | | | | | | Divergence and curl of a vector | | | | | | | field. Del and Laplacian operators. | | | | | | | Vector identities. Vector | | | | | | | Integration: Ordinary Integrals of | | | | | | | Vectors. Multiple integrals, | | | | | | | Jacobian. Notion of infinitesimal | | | | | | | line, surface and volume elements. | | | | | | | Line, surface and volume integrals | | | | | | | of Vector fields. Flux of a vector | | | | | | | field. Gauss' divergence theorem, | | | | | | | Green's and Stokes Theorems and | | | | | | | their applications (no rigorous | | | | | | | proofs). | | | | | |--|---|--------------------------|----|-----------
-----------------------------------| | Unit II: First and Second order Differential Equations | First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. | Dr.
Utpala
Baishya | 17 | September | From 1/9/2022 to 18/9/2022 | | Unit III:
Orthogonal
Curvilinear
Coordinates | Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. | Dr.
Utpala
Baishya | 6 | September | 19/9/2022
to
25/9/2022 | | Unit IV:
Dirac Delta
function
and its
Properties | Definition of Dirac delta function. Representation as limit of a Gaussian function and rectangular function. Properties of Dirac delta function. | Dr.
Utpala
Baishya | 2 | September | From 26/9/2022 to 27/9/2022 | | Unit V:
Introduction
to
Probability | Independent random variables: Probability distribution functions; binomial, Gaussian and Poisson, with examples. Mean and variance. | Dr.
Utpala
Baishya | 4 | September | From 28/9/2022 to 31/9/2022 | | Unit VI:
Theory of
Errors | Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. Least-squares fit. | Dr.
Utpala
Baishya | 6 | October | From1/10/
2022 to
7/10/2022 | | Lab | Introduction and Overview Computer architecture and organization, memory and Input/output devices Basics of scientific computing Binary and | Dr.
Utpala
Baishya | 30 | November | From 8/10/2022 to 15/11/2022 | decimal arithmetic. Floating point algorithms, numbers, Sequence, Selection and Repetition, single and double precision arithmetic, underflow overflowemphasize importance of making equations of in terms dimensionless variables, Iterative methods Review of C & C++/Python/ Matlab/ Mathematica **Programming** fundamentals Introduction to Programming, constants, variables and data types, operators and Expressions I/O statements, scanf and printf, c in and c out, Manipulators for data Control formatting, statements (decision making and looping statements) (if statement. if-else Statement. Nested if Structure. else-if Statement. **Ternary** Operator. goto Statement. switch Statement. Uncondi- tional and Conditional Looping. while Loop. do-while Loop. for Loop. Breakand continue Statements. Nested Loops), Arrays (1D & 2D) and strings, user defined functions, Structures and Unions, Idea of classes and objects. Programs Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting numbers in ascending descending order, Binary search Random number generation Area of circle, area of square, volume of sphere, value of pi (π) Solution of Algebraic and Transcendental equations by Newton Raphson methods Solution of linear and quadratic equation, solving a = $tan\alpha$, $I = I_0(sin\alpha/\alpha)^2$ in optics | Interpolation by Newton Gregory Forward and Backward difference formula Evaluation of trigonometric functions e.g. sinθ, cosθ, tanθ etc.Numerical Integration (Trapezoidal and Simpson rules), Monte Carlo method Given Position with equidistant time data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop Solution of Ordinary Differential Equations (ODE) First order Differential | | | |--|--|--| | data to calculate velocity and acceleration and vice versa. Find the area of B-H Hysteresis loop Solution of Ordinary Differential Equations (ODE) | | | | second and fourth order methods First order differential equation (a) Radioactive decay (b) Newton's law of cooling. | | | Session: 2022-23 (August –December) | Department | Physics | Semester | First semester | |------------|-----------|----------|----------------| | Subject | Mechanics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HC-1016 | | | | | | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted to | Hours | Month | Date | |--------------|----------------------------|-------------|-------|--------|-----------| | Unit I: | Reference frames. Inertial | Dr. | 6 | August | From | | Fundamentals | frames; Review of Newton's | Chandrama | | | 1/8/2022 | | of Dynamics | Laws of Motion. Galilean | Kalita | | | to | | - | transformations; Galilean | | | | 10/8/2022 | | | invariance. Momentum of | | | | | | | variable mass system: motion of rocket. Motion of a projectile in Uniform gravitational field Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse. | | | | | |------------------------------------|--|----------------------------|----|----------------------------|--------------------------------------| | Unit II: Work
and Energy | Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non-conservative forces. Law of conservation of Energy. | Mr.
Jayanta
Deka | 4 | August | From
11/8/2022
to
17/8/2022 | | Unit III:
Collisions | Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames. | Dr.
Chandrama
Kalita | 3 | August | From
18/8/2022
to
25/8/2022 | | Unit IV:
Rotational
Dynamics | Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation. | Mr.
Jayanta
Deka | 12 | August
and
September | From 26/8/2022 to 12/9/2022 | | Unit V:
Elasticity | Relation between Elastic constants. Twisting torque | Dr.
Chandrama | 3 | September | From 13/9/2022 | | | on a Cylinder or Wire.
Cantilever. | Kalita | | | to
20/9/2022 | |---|---|----------------------------|---|-----------------------------|--| | Unit VI:
Fluid Motion | Kinematics of Moving
Fluids: Poiseuille's Equation
for Flow of a Liquid through
a Capillary Tube. | Dr.
Chandrama
Kalita | 2 | September | From 21/9/2022 to 25/9/2022 | | Unit VII:
Gravitation
and Central
Force Motion | Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. | Dr.
Chandrama
Kalita | 8 | September
and
October | From 26/9/2022 to 13/10/2022 | | Unit VIII:
Oscillations | SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. Compound Pendulum. | Dr.
Chandrama
Kalita | 8 | October | From
14/10/2022
to
23/10/2022 | | Unit IX:
Non-Inertial
Systems | Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. | Mr.
Jayanta
Deka | 4 | October
and
November | From 26/10/2022 to 2/11/2022 | | | Coriolis force and its applications. | | | | | |---|---|---|----|-----------------------|------------------------------| | Unit X:
Special
Theory of
Relativity | Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass-energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of
Energy and Momentum. | Mr.
Jayanta
Deka | 10 | November | From 3/11/2022 to 15/11/2022 | | Lab | A minimum of seven experiments to be done. 31. Measurements of length (or diameter) using vernier caliper, screw gauge, Spherometer and travelling microscope. 32. To study the Motion of Spring and calculate (a) Spring constant and (b) Rigidity modulus. 33. To determine the Moment of Inertia of a cylinder about two different axes of symmetry by torsional oscillation method. 34. To determine Coefficient of Viscosity of water by | Dr. Chandrama Kalita and Mr. Jayanta Deka | 15 | November and December | From 16/11/22 to 5/12/2022 | | | | T | 1 | 1 | |--------|----------------------|---|---|---| | | apillary Flow | | | | | M | ethod (Poiseuille's | | | | | me | ethod). | | | | | 35. To | determine the | | | | | Ye | oung's Modulus of | | | | | the | e material of a wire | | | | | by | Searle's | | | | | ap | paratus. | | | | | 36. To | determine the | | | | | M | odulus of Rigidity | | | | | of | a Wire Static | | | | | me | ethod. | | | | | 37. To | determine the | | | | | va | lue of g using Bar | | | | | Pe | ndulum. | | | | | 38. To | determine the | | | | | va | lue of g using | | | | | Ka | iter's Pendulum. | | | | | 39. To | determine the | | | | | he | ight of a building | | | | | us | ing a Sextant. | | | | | 40. To | determine g and | | | | | ve | locity for a freely | | | | | fai | lling body using | | | | | Di | gital Timing | | | | | Te | echnique | | | | Session: 2022-23 (August –December) | Department | Physics | Semester | First semester | |------------|-----------|----------|----------------| | Subject | Mechanics | Credit | 6 | | Course | | Paper No | PHY-HG/RC-1016 | | Remarks | | Marks | 100 | | Unit | Course Content | Allotted to | Hours | Month | Date | |---------|------------------------------|-------------|-------|--------|----------| | Unit I: | Vector algebra. Scalar and | Dr. Utpala | 6 | August | From | | Vectors | vector products. Derivatives | Baishya | | | 1/8/2022 | | | of a vector with respect to a parameter. Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coeffcients | | | | to
7/8/2022 | |-------------------------------------|--|----------------------------|----|----------------------------|--------------------------------------| | Unit II :
Laws of
Motion | Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. | Mr. Jayanta
Deka | 10 | August | From 8/8/2022 to 20/8/2022 | | Unit III:
Momentum
and Energy | Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. | Dr.
Chandrama
Kalita | 6 | August | From 21/8/2022 to 28/8/2022 | | Unit IV :
Rotational
Motion | Angular velocity and angular momentum. Torque. Conservation of angular momentum | Dr.
Chandrama
Kalita | 5 | August
and
September | From 30/8/2022 to 7/9/2022 | | Unit V :
Gravitation | Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). | Mr. Jayanta
Deka | 7 | September | From
8/9/2022
to
18/9/2022 | | Unit VI :
Oscillations | Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. Compound pendulum. | Mr. Jayanta
Deka | 7 | September | From
19/9/2022
to
28/9/2022 | | Unit VII: | Hooke's law - Stress-strain | Dr. | 8 | September | From 20/8/2022 | | Elasticity | diagram – Elastic moduli- | Chandrama | | and | 29/8/2022 | | | Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants – Work done in stretching and work done in twisting a wire – Twisting couple on a cylinder – Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia – q, η and σ by Searles method. | Kalita | | October | to
20/10/2022 | |--|--|---|----|----------------------------|------------------------------| | Unit VIII:
Special
Theory of
Relativity | Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities. | Dr. Utpala
Baishya | 7 | October
and
November | From 21/10/2022 to 1/11/2022 | | Lab | A minimum of five experiments to be done. 25. Measurements of length (or diameter) using vernier caliper, screw gauge and Spherometer. 26. To determine the Moment of Inertia of a Symmetrical body about an axis by torsional oscillation method. 27. To determine the Young's Modulus of the material of a wire by Searle's apparatus. 28. To determine the Modulus of Rigidity of a Wire Static method. 29. To determine the elastic Constants of a wire by Searle's | Dr. Chandrama Kalita and Mr. Jayanta Deka | 16 | November | From 2/11/2022 to 20/11/2022 | | method. | | | |----------------------------|--|--| | 30. To determine the value | | | | of g using Bar | | | | Pendulum. | | | | 31. To determine the value | | | | of g using Kater's | | | | Pendulum. | | | | 32. To study the Motion | | | | of Spring and | | | | calculate (a) Spring | | | | constant and (b) value | | | | of g. | | | | | | | Session: 2022-23 (August –December) | Department | Physics | Semester | Third semester | |------------|--------------|----------|----------------| | Subject | Mathematical | Credit | 6 | | | Physics II | | | | Course | | Paper No | PHY-HC-3016 | | Remarks | | Marks | 100 | | Unit | Course conent | Allotted | Hours | Month | Date | |-----------|--------------------------------------|----------|-------|--------|----------| | | | to | | | | | Unit I: | Singular Points of Second Order | Dr. | 18 | August | From | | Frobenius | Linear Differential Equations and | Utpala | | | 1/08/22 | | Method | their importance. Frobenius method | Baishya | | | to | | and | and its applications to differential | | | | 24/08/22 | | Special | equations. Legendre, Hermite and | | | | | | Functions | Laguerre Differential Equations. | | | | | | | Properties of Legendre Polynomials: | | | | | | | Rodrigues Formula, Generating | | | | | | | Function, Orthogonality. Simple | | | | | | | recurrence relations. Expansion of | | | | | | | function in a series of Legendre | | | | | | | Polynomials. | | | | | |--|--|--------------------------|----|-----------------------------|------------------------------------| | Unit II:
Partial
Differential
Equations | Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular membranes. Diffusion Equation. | Dr.
Utpala
Baishya | 14 | August
and
September | From 25/08/22 to 10/09/22 | | Unit III:
Some
Special
Integrals | Beta and Gamma Functions and
Relation between them. Expression
of Integrals in terms of Gamma
Functions. | Dr.
Utpala
Baishya | 4 | September | From
11/09/22
to
16/09/22 | | Unit IV:
Matrix | Matrix algebra using index notation, Properties of matrices, Special matrix with their properties: Transpose matrix, complex conjugate matrix, Hermitian matrix, Anti-Hermitian matrix, special square matrix, unit matrix, diagonal matrix, co-factor matrix, adjoint of a matrix, self- adjoint matrix, symmetric matrix, anti-symmetric matrix, unitary matrix, orthogonal matrix, trace of a matrix, inverse matrix. Determinant, Rank, Eigen value, Eigen vector and diagonalisation of matrix. | | 15 | September
and
October | From
17/09/22
to
13/10/22 | | Unit V:
Fourier
Series | Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coeffcients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Application to square and triangular waves. | Dr.
Utpala
Baishya | 9 | October | From
14/10/22
to
18/10/22 | | Lab | The aim of this Lab is to use the | Dr. | 15 | October | From | |-----|---------------------------------------|---------|----|----------|----------| | Lau | computational methods to solve | | 13 | and | 29/10/22 | | | <u> </u> | Utpala | | | | | | physical problems. Course will | Baishya | | November | to | | | consist of lectures (both theory and | | | | 15/11/22 |
| | practical) in the Lab. Evaluation | | | | | | | done not on the programming but | | | | | | | on the basis of formulating the | | | | | | | problem. | | | | | | | Introduction to Numerical | | | | | | | computation softwares Introduction | | | | | | | to | | | | | | | Scilab/Mathematica/Matlab/Python, | | | | | | | <u> </u> | | | | | | | Advantages and disadvantages, Scilab | | | | | | | / Mathematica / Matlab/ Python | | | | | | | environment, Command window, | | | | | | | Figure window, Edit window, | | | | | | | Variables and arrays, Initialising | | | | | | | variables in Scilab / Mathematica / | | | | | | | Matlab/ Python, Multidimensional | | | | | | | ar- rays, Subarray, Special values, | | | | | | | Displaying output data, data file, | | | | | | | Scalar and array operations, | | | | | | | Hierarchy of operations, Built in | | | | | | | Scilab / Mathematica / | | | | | | | | | | | | | | , | | | | | | | Introduction to plotting, 2D and 3D | | | | | | | plotting. | | | | | | | Curve fttting, Least square fit, | | | | | | | Goodness of fit, standard | | | | | | | deviation Ohms law to calculate | | | | | | | R, Hooke's law to calculate | | | | | | | spring constant. | | | | | | | Solution of Linear system of | | | | | | | equations Solution of Linear | | | | | | | system of equations by Gauss | | | | | | | elimination method and Gauss | | | | | | | Seidal method. Diagonalisation of | | | | | | | matrices, Inverse of a matrix, Eigen | | | | | | | vectors, eigenvalues problems. | | | | | | | | | | | | | | Solution of mesh equations of | | | | | | | electric circuits (3 meshes) Solution | | | | | | | of coupled spring mass systems (3 | | | | | | | masses). | | | | | | | Generation of Special functions | | | | | | | Generation of Special functions | | | | | | | using User defined functions in | | | | | | C-11-1- / M-41 / M 41 1 | | | |---------------------------------------|--|--| | Scilab / Math- ematica / Matlab. | | | | Generating and plotting Legendre | | | | Polynomials Generating and | | | | plotting Hermite function. | | | | First order ODE Solution of first | | | | order Differential equation Euler, | | | | modified Euler and Runge-Kutta | | | | second order methods. First order | | | | differential equation (a) Current in | | | | RC, LC circuits with DC source (b) | | | | Classical equations of motion. | | | | Second order ODE Second order | | | | differential equation. Fixed | | | | difference method. Second order | | | | Differential Equation | | | | Harmonic oscillator (no friction) (b) | | | | Damped Harmonic oscillator (c) | | | | Over damped (d) Critical damped. | | | | Partial Differential Equation (PDE) | | | | Solution of Partial Differential | | | | Equation: (a) Wave equation (b) | | | | Heat equation. | | | | | | | | Department | Physics | Semester | Third semester | |------------|-----------------|----------|----------------| | Subject | Thermal Physics | Credit | 6 | | | | | | | Course | | Paper No | PHY-HC-3026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---------|----------------------------|-------------|-------|--------|----------| | Unit I: | Extensive and intensive | Dr. | 8 | August | From | | Zeroth | Thermodynamic Variables, | Chandrama | | | 1/08/22 | | and | , | Kalita | | | to | | First | Thermodynamic Equilibrium, | | | | 12/08/22 | | Law of
Thermod
ynamics | Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: General Relation between C _P and C _V , Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient. | | | | | |--|---|----------------------------|----|------------|------------------------------------| | Unit II:
Second
Law of
Thermod
ynamics | Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & effciency. Refrigerator & coeffcient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. | Dr.
Chandrama
Kalita | 10 | August | From
13/08/22
to
28/08/22 | | Unit III:
Entropy | Concept of Entropy, Clausius Theorem. Clausius Inequality, | Dr.
Chandrama | 7 | August and | From 29/08/22 | | | Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Entropy Changes in Reversible and Irreversible Processes. Principle of Increase of Entropy. Temperature—Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero. | Kalita | | September | to
7/09/22 | |---|--|----------------------------|---|-----------|-----------------------------------| | Unit IV:
Thermod
ynamic
Potential
s | Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations. | Dr.
Chandrama
Kalita | 7 | September | From
8/09/22
To
20/09/22 | | Unit V: Maxwell 's Thermod ynamic Relation | Derivations and applications of Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Values of C_p - C_v , (3) TdS | Dr.
Chandrama
Kalita | 7 | September | From 21/09/22 to 30/09/22 | | S | Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. | | | | | |--|--|----------------------------|----|-----------------------------|------------------------------------| | Unit VI: Distribut ion of Velocitie s | Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. | Dr.
Chandrama
Kalita | 7 | September
and
October | From 31/09/22 to 10/10/22 | | Unit VII:
Molecula
r
Collision
s | Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. | Dr.
Chandrama
Kalita | 4 | October | From
11/10/22
to
15/10/22 | | Unit
VIII:
Real
Gases | Behaviour of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. P-V | Dr.
Chandrama
Kalita | 10 | October | From 16/10/22 to 30/10/22 | | Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule- Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule-Thomson Cooling. | | | | | |---|----------------------------|----|----------------------|---------------------------| | Lab 15. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. 16. To determine the Coefficient of Thermal Conductivity of
Cu by Searle's Apparatus. 17. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method. 18. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method. 19. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT). 20. To study the variation of Thermo-emf of a Thermocouple with Difference of Temperature of its Two Junctions. 21. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference | Dr.
Chandrama
Kalita | 14 | October and November | From 31/10/22 to 20/11/22 | | amplifier and to | | | |-------------------|--|--| | determine Neutral | | | | Temperature | | | | Department | Physics | Semester | Third semester | |------------|--------------------------------|----------|----------------| | Subject | Digital Systems & Applications | Credit | 6 | | Course | | Paper No | PHY-HC-3036 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|--|------------------------|-------|--------|----------------------------------| | Unit I:
Introduction
to CRO | Block Diagram of CRO. Electron Gun, Deflection System and Time Base. Deflection Sensitivity. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. | Mr.
Jayanta
Deka | 3 | August | From
1/08/22
to
4/08/22 | | Unit II: Integrated Circuits (qualitative treatment only) | Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI | Mr.
Jayanta
Deka | 3 | August | From 5/08/22 to 10/08/22 | | | (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs. | | | | | |---|---|------------------------|---|----------------------------|------------------------------------| | Unit III:
Digital Circuits | Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. | Mr.
Jayanta
Deka | 6 | August | From
11/08/22
to
20/08/22 | | Unit IV:
Boolean
Algebra | De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. | Mr.
Jayanta
Deka | 6 | August | From 21/08/22 to 30/08/22 | | Unit V:
Data
Processing
Circuits | Basic idea of Multiplexers,
De-multiplexers, Decoders,
Encoders. | Mr.
Jayanta
Deka | 4 | August
and
September | From 31/08/22 to 5/09/22 | | Unit VI:
Arithmetic | Binary Addition. Binary | Mr.
Jayanta | 5 | September | From 6/09/22 | | Circuits | Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. | Deka | | | to
13/09/22 | |--|--|------------------------|---|----------------------------|------------------------------------| | Unit VII:
Sequential
Circuits | SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race- around conditions in JK Flip-Flop. M/S JK Flip-Flop. | Mr.
Jayanta
Deka | 6 | September | From
14/09/22
to
25/09/22 | | Unit VIII:
Timers: | Block diagram and applications: Astable multivibrator and Monostable multivibrator. | Mr.
Jayanta
Deka | 3 | September | From 26/09/22 to 31/09/22 | | Unit IX:
Shift
Registers | Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). | Mr.
Jayanta
Deka | 2 | October | From
11/10/22
to
15/10/22 | | Unit X:
Counters | Ring Counter, Asynchronous counters, Decade Counter. Synchronous Counter. | Mr.
Jayanta
Deka | 4 | October | From 16/10/22 to 20/10/22 | | Unit XI:
Computer
Organization | Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. | Mr.
Jayanta
Deka | 6 | October
and
November | From 21/10/22 to 1/11/22 | | Unit XII:
Intel 8085
Microproces | Main features of 8085.
Block diagram. Components. | Mr.
Jayanta
Deka | 8 | November | From 2/11/22 to | | sor
Architecture | Pin-out diagram. Buses. Registers. ALU. Memory. Stack memory. Timing & Control circuitry. | | | | 12/11/22 | |---|---|------------------------|----|----------|---------------------------| | Unit XIII:
Introduction
to Assembly
Language | 1 byte, 2 byte, & 3 byte instructions. | Mr.
Jayanta
Deka | 4 | November | From 13/11/22 to 19/11/22 | | Lab | A minimum of eight experiments to be done. 31. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO. 32. To test a Diode and Transistor using a Multimeter. 33. To design a switch (NOT gate) using a transistor. 34. To verify and design AND, OR, NOT and XOR gates using NAND gates. 35. To design a combinational logic system for a specified Truth Table. 36. To convert a Boolean expression into logic circuit and design it using logic gate ICs. 37. Half Adder, Full Adder and 4-bit binary Adder. 38. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder IC. | Mr.
Jayanta
Deka | 16 | | From 20/11/22 to 1/12/22 | | 39. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. | | |--|--| | 40. To build JK Master-
slave flip-flop using
Flip-Flop ICs . | | | 41. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. | | | 42. To make a 4-bit Shift Register (serial and parallel) using D- type/JK Flip-Flop ICs. | | | 43. To design an astable multivibrator of given specifications using 555 Timer. | | | 44. To design a monostable multivibrator of given specifications using 555 Timer. | | | 45. Write the following programs using 8085 Microprocessor | | | (a) Addition and subtraction of numbers using direct addressingmode | | | (b) Addition and subtraction of numbers using indirect addressin gmode | | | (c) Multiplication by repeated addition | | | (d) Division by repeated subtraction | | | (e) Handling of 16-bit | | | Numbers | | | |--|--|--| | (f) Use of CALL and RETURN Instruction (g) Block data handling | | | | Department | Physics | Semester | Third semester | |------------|---|----------|----------------| | Subject | Thermal Physics & Statistical Mechanics | Credit | 6 | | Course | | Paper No | PHY-HG/RC-3016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hour | Month | Date | |--------------------------------|---|----------------|------|--------|----------------| | | | | S | | | | Unit I : Laws of Thermodynamic | Thermodynamic Description of system: Zeroth Law of | Mr.
Jayanta | 22 | August | From 1/8/22 to | | s | thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP & CV, Work Done during Isothermal and Adiabatic Processes, | _ | | | 26/8/22 | | | Compressibility & Coefficient, | | | | | | | Reversible & irreversible processes, Second law & Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropytemperature diagrams, Third law of thermodynamics, Unattainability of absolute zero. | | | | | |--|--|-----------------------------|----|--------------------------------|----------------------------------| | Unit
II:
Thermodynamic
Potentials | Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations & applications - Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP — C _V), C _P /C _V , TdS equations. | Dr. Utpala
Baishya | 10 | August
and
Septemb
er | From 27/8/22 to 10/9/22 | | Unit III :
Kinetic Theory
of Gases | Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. | Dr. Utpala
Baishya | 10 | Septemb
er | From
11/9/22
to
24/9/22 | | Unit IV:
Theory of
Radiation | Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law. | Dr.
Chandram
a Kalita | 6 | Septemb
er and
October | From 25/9/22 to 12/10/22 | | Unit V :
Statistical
Mechanics | Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - dis- tribution of velocity – Quantum statistics – Fermi-Dirac distribution law – electron gas – Bose-Einstein distribution law – photon gas – comparison of three statistics. | Dr.
Chandram
a Kalita | 12 | October
and
Novemb
er | From
13/10/22
to
2/11/22 | |--------------------------------------|---|--|----|--------------------------------|-----------------------------------| | Lab | 21. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method. 22. Measurement of Planck's constant using black body radiation. 23. To determine Stefan's Constant. 24. To determine the coefficient of thermal conductivity of copper by Searle's Apparatus. 25. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method. 26. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method. | Dr. Chandram a Kalita, Dr. Utpala Baishya , Mr. Jayanta Deka | 20 | Novemb | From 3/11/22 to 25/11/22 | | 27. To determine the temperature coefficient of resistance by Platinum resistance thermometer. | | |---|--| | 28. To study the variation of thermo emf across two junctions of a thermocouple with temperature. | | | 29. To | | | record and | | | analyze the | | | cooling | | | temperature | | | of an hot | | | object as a | | | function of | | | time using a | | | thermocouple | | | and suitable | | | data | | | acquisition | | | system. | | | 30. To calibrate | | | Resistance | | | Temperature | | | Device (RTD) using Null | | | Method/Off- | | | Balance Bridge. | | | | | | Department | Physics | Semester | Third semester | |------------|---------------------|----------|----------------| | Subject | Digital Photography | Credit | 4 | | | & Editing | | | | Course | | Paper No | PHY-SE-3044 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|--|----------------------------|-------|-----------------------------|-----------------------------------| | Unit I:
Theory of
Basic
Photography | History of Photography, Introduction to Digital Photography, Digital Camera, dSLR, Advantages and Disadvantages of Digital Photography | Mr.
Jayanta
Deka | 2 | August | From
1/8/22
to
15/8/22 | | Unit II: The
Camera-
Components
and
Concepts | Lens, Focal Length, Lens type,
Aperture, Depth of Field,
Shutter, Shutter Speed, Image
sensor, Memory cards, External
Flash, File types | Dr.
Chandrama
Kalita | 2 | August | From 16/8/22 to 30/8/22 | | Unit III:
Capturing
an Image,
Hands-on
Basics | Elements of Composition: Pattern, Symmetry, Texture, Depth of Field, Lines; Law of Thirds, Camera Shake, Red eye, Lighting, Digital Noise | Dr.
Chandrama
Kalita | 3 | August
and
September | From 31/8/22 to 12/9/22 | | Unit IV:
Exposure
Modes | Automatic mode, Manual mode, aperture mode, shutter mode, Scene mode, Portrait mode, landscape mode, close upmode, sports mode, Twilight mode, Night Mode, Black | Dr.
Chandrama
Kalita | 5 | September
and
October | From
13/9/22
to
20/10/22 | | | and white, sepia, Panoramic mode. | | | | | |--|--|------------------------|---|----------------------------|------------------------------------| | Unit V:
Conditions
in Digital
Photography | Lighting, Importance of Natural Light, Best Time of Day to Take Photos, Disable Flash Indoors, Disable Flash in Low Light, Use Flash to Balance Bright Light, Get Closer to the Subject, Crop Your Photo, Choose Better Backgrounds, Pick Proper Orientation, Use Point of View, Frame your Subject, Experiment with Abstract Photography, Holding your DSLR | Dr. Utpala
Baishya | 7 | October
and
November | From 21/10/22 to 10/11/22 | | Unit VI:
Digital
Videography | Various Parts, Contrl and Features of Video Camera, Types of daylight applications, Three points lighting- (a) The key light, (b) The fill light and the back light, (c) Bounce and diffuse light, Framing and shots, Camera angle and camera movements | Dr. Utpala
Baishya | 4 | November | From
11/11/22
to
17/11/22 | | Unit VII:
Post
Production | The Digital Workflow: Capturing the Image, Storing the Photo, Cataloging the Image Files, Editing the Photo, Sharing, Archiving and Backing Up the Photograph | Mr.
Jayanta
Deka | 7 | November | From 18/11/22 to 30/11/22 | | Department | Physics | Semester | Fifth semester | |------------|----------------------------------|----------|----------------| | Subject | Quantum Mechanics & Applications | Credit | 6 | | Course | | Paper No | PHY-HC-5016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|---|-----------------------------|-------|--------|-----------------------| | Unit I: Time Dependen t Schröding er Equation | Time dependent Schrödinger equation and dynamical evolution of a quantum state, properties of wave function. Interpretation of wave function. Probability and probability current densities in three dimensions. Conditions for physical acceptability of wave functions. Normalization. Linearity and Superposition Principles. Eigenvalues and eigenfunctions. Position, momentum and energy operators; commutator of position and momentum operators. Expectation values of position and momentum. wave function of a free particle. | Dr.
Chandrama
Kalita, | 6 | August | From 1/8/22 to 8/8/22 | | Unit II:
Time | Hamiltonian, stationary | Dr. Utpala
Baishya , | 10 | August | From 9/8/22 to | | Independe
nt
Schröding
er
Equation | states and energy eigenvalues; expansion of an arbitrary wave function as a linear combination of energy eigenfunctions; General solution of the time dependent Schrödinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wave function; Position- momentum uncertainty principle. | | | | 22/8/22 | |--|---|-----------------------------|----|----------------------------|------------------------| | Unit III:
Bound
States | Continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions
using Frobenius method; Hermite polynomials; ground state, zero point energy & uncertainty principle. | Mr. Jayanta
Deka | 12 | August
and
September | From 22/8/22 to 4/9/22 | | Unit IV:
Hydrogen
-like
Atoms | Time independent
Schrödinger equation in
spherical polar coordinates; | Dr.
Chandrama
Kalita, | 10 | September | From 5/9/22 to 18/9/22 | | | separation of variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wave functions from Frobenius method; shapes of the probability densities for ground & first excited states; Orbital angular momentum quantum numbers l and m; s, p, d, shells. | | | | | |--|---|-------------------------|----|-----------------------------|------------------------------------| | Unit V:
Atoms in
Electric
&
Magnetic | Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton. Zeeman Effect: Normal and Anomalous Zeeman Effect. Paschen- Back Effect and Stark Effect (Qualitative Discussion only). | Dr. Utpala
Baishya , | 12 | September
and
October | From
19/9/22
to
12/10/22 | | Unit VI:
Many
Electron
Atoms | Pauli's Exclusion Principle. Symmetric & Antisymmetric W ave Functions. Periodic table. Fine structure. Spin orbit coupling. Spectral Notations for Atomic States. Total angular momentum. Vector Model. Spin-orbit | Mr. Jayanta
Deka | 10 | October | From
13/10/22
to
27/10/22 | | | coupling in atoms: L - S and j - j couplings. Hund's Rule. Term symbols. Spectra of Hydrogen and Alkali Atoms (Na etc.). | | | | | |-----|--|---|----|----------------------|---------------------------| | Lab | Use C/C++/Scilab/FORTRAN/ Mathematica/ Python for solving the following problems based on Quantum Mechanics 5. Solve the s-wave Schrödinger equation for the ground state and the first excited state of the hydrogen atom $\frac{d^2y}{dr^2} = A(r)u(r), A(R)$ $A(r) = \frac{2m}{\hbar^2}[V(r) - E]$ $Where V(r) = -\frac{e^2}{r}$ 6. Solve the s-wave radial Schrödinger equation for an atom $\frac{d^2y}{dr^2} = A(r)u(r),$ $A(r) = \frac{2m}{\hbar^2}[V(r) - E]$ Where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened Coulomb potential $V(r) = -\frac{e^2e^{-r/a}}{r}$ | Dr. Chandrama Kalita, Dr. Utpala Baishya , Mr. Jayanta Deka | 12 | October and November | From 28/10/22 to 15/11/22 | | <u></u> | | | |---|--|--| | Find the energy (in | | | | eV) of the ground | | | | state of the atom to | | | | an accuracy of three | | | | significant digits. | | | | Also, plot the | | | | corresponding wave | | | | function. Take | | | | e=3.795 (eVÅ), and | | | | <i>a</i> =3 Å, 5 Å, and 7 Å | | | | in the units of $\hbar c =$ | | | | 1973(eVÅ) and $m =$ | | | | 0.511×10^6 eV/c ² . | | | | The ground state | | | | energy is expected | | | | to be above -12 eV | | | | in all three cases. | | | | 7. Solve the s-wave radial | | | | Schrödinger equation for | | | | a particle of mass m | | | | $\frac{d^2y}{dr^2} = A(r)u(r), A(R)$ | | | | | | | | $A(r) = \frac{2m}{\hbar^2} [V(r)]$ | | | | · · · · · · · · · · · · · · · · · · · | | | | -E] | | | | The anharmonic potential | | | | | | | | V(r) | | | | | | | | $=\frac{1kr^2}{2} + \frac{1b}{3}r^3$ | | | | | | | | for the ground state | | | | energy (in MeV) of | | | | particle to an | | | | accuracy of three | | | | significant digits. | | | | Also, plot the | | | | corresponding wave | | | | function. Choose | | | |---|--|--| | $m=940 \text{ MeV/c}^2$, | | | | $k=100 \text{ MeV fm}^{-2}$, | | | | <i>b</i> =0, 10, 30 MeV fm ⁻ | | | | ³ . In these units, | | | | ch=197.3 MeV fm. | | | | The ground state | | | | energy I is expected to | | | | lie in between 90 and | | | | 110 MeV for allthree | | | | cases. | | | | 8. Solve the <i>s</i> -wave radial | | | | Schrödinger equation for | | | | the vibration of hydrogen | | | | molecule | | | | $\frac{d^2y}{dr^2} = A(r)u(r),$ | | | | $A(r) = \frac{2\mu}{\hbar^2} [V(r)]$ | | | | -E | | | | -1 | | | | where μ is the reduced | | | | mass of the two-atom | | | | system for the Morse potential | | | | r | | | | W() | | | | V(r) | | | | $=D(e^{-2\alpha r}-e^{-\alpha r})$ | | | | $r' = \frac{r - r_0}{r}$ | | | | Find the lowest | | | | vibrational energy (in | | | | | | | MeV) of the molecule to an accuracy of thee significant digits. Also plotthe corresponding wave function. Take $m=940\times10^6 \,\mathrm{eV/c^2},\,D=0.755501\,\,\mathrm{eV},\,\alpha=1.44,$ | and r_0 =0.131349 Å. | | |------------------------|--| Department | Physics | Semester | Fifth semester | |------------|------------------------|----------|----------------| | Subject | Solid State
Physics | Credit | 6 | | Course | | Paper No | PHY-HC-5026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |-----------------|------------------------------|-------------|-------|--------|-----------| | Unit I: Crystal | Amorphous and Crystalline | Dr. | 10 | August | From | | Structure | Materials. Lattice | Chandrama | | | 1/8/22 to | | | Translation Vectors. | Kalita, | | | 13/8/22 | | | Symmetry operations, | | | | | | | Lattice with a Basis - | | | | | | | Central and Non-Central | | | | | | | Elements. Unit Cell. Miller | | | | | | | Indices. Reciprocal Lattice. | | | | | | | Types of Lattices. Brillouin | | | | | | | Zones. Diffraction of X- | | | | | | | rays by Crystals. Bragg's | | | | | | | Law. Atomic and | | | | | | | Geometrical Factor. | | | | | | | | | | | | | Unit II:
Elementary
Lattice Dynamics | Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T ³ law. | Dr. Utpala
Baishya , | 10 | August | From
14/8/22
to
28/8/22 | |--|---|-----------------------------|----|----------------------------|----------------------------------| | Unit III: Magnetic Properties of Matter | Dia, Para, Ferri, and Ferromagnetic Materials. Classical Langevin Theory of Dia and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetism and Ferromagnetic Domains. Discussion of B – H Curve. Hysteresis and Energy Loss. | Mr.
Jayanta
Deka | 8 | August
and
September | From 29/8/22 to 9/9/22 | | Unit IV:
Dielectric
Properties of
Materials | Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy | Dr.
Chandrama
Kalita, | 8 | September | From
10/9/22
to
20/9/22 | | | and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons, T ₀ modes. | | | | | |--|--|-------------------------|----|-----------------------------|--------------------------| | Unit V:
Ferroelectric
Properties of
Materials | Structural phase transition, Classification of crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop. | Dr. Utpala
Baishya , | 6 | September | From 21/9/22 to 30/9/22 | | Unit VI: Free
Electron Theory
of Metals | Electrical and thermal conductivity of metals, Wiedemann-Franz law. Elementary band theory: Kronig Penny model. Band Gap. Conductor, Semiconductor (<i>P</i> and <i>N</i> type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. | Mr.
Jayanta
Deka | 12 | September
and
October | From 31/9/22 to 25/10/22 | | | Measurement of conductivity (4-probe method) & Hall coefficient. | | | | | |--------------------------------
---|--|----|----------------------------|--------------------------| | Unit VII:
Superconductivity | Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Super- conductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation). | Dr.
Chandrama
Kalita, | 6 | October
and
November | From 26/10/22 to 1/11/22 | | Lab | A minimum of five experiments to be done. 11. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method). 12. To measure the Magnetic susceptibility of Solids. 13. To determine the Coupling Coeffcient of a Piezoelectric crystal. 14. To measure the Dielectric Constant of a dielectric Materials with frequency. 15. To determine the complex dielectric | Dr. Chandrama Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka | 15 | November | From 2/11/22 to 20/11/22 | | constant and plasma frequency of metal using Surface Plasmon resonance (SPR). 16. To determine the refractive index of a dielectric layer using SPR. 17. To study the PE Hysteresis loop of a Ferroelectric Crystal. 18. To draw the B - H curve of Fe using Solenoid & determine energy loss from Hysteresis. 19. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method | |---| | determine energy loss from Hysteresis. 19. To measure the resistivity of a semiconductor (Ge) with temperature by | | Department | Physics | Semester | Fifth semester | |------------|----------------------------|----------|----------------| | Subject | Experimental
Techniques | Credit | 6 | | Course | | Paper No | PHY-HE-5016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|---|-----------------------------|-------|----------------------------|-------------------------| | Unit I:
Measurements | Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chisquare) and curve fitting. | Dr.
Chandrama
Kalita, | 7 | August | From 1/8/22 to 13/8/22 | | Unit II:
Signals and
Systems | Periodic and aperiodic signals. Impulse response, transfer function and frequency response of first and second order systems. Fluctuations and Noise in measurement system. S/N ratio and Noise figure. Noise in frequency domain. Sources of Noise: Inherent fluctuations, Thermal noise, Shot noise, 1/f noise. | Dr.
Chandrama
Kalita, | 7 | August | From 14/8/22 to 25/8/22 | | Unit III:
Shielding and
Grounding | Unit IV: Transducers & industrial instrumentation (working Methods of safety grounding. Energy coupling. | Dr. Utpala
Baishya , | 4 | August
and
September | From 26/8/22 to 1/9/22 | | | Grounding. Shielding:Electrostatic shielding. Electromagnetic Interference Shielding. | | | | | |--|---|-------------------------|----|-----------|------------------------| | Unit IV: principle, efficiency, applications | Static and dynamic characteristics of measurement Systems. Generalized performance of systems, Zero order first order, second order and higher order systems. Electrical, Thermal and Mechanical systems. Calibration. Transducers and sensors. Characteristics of Transducers. Transducers as electrical element and their signal conditioning. Temperature transducers: RTD, Thermistor, Thermocouples, Semiconductor type temperature sensors (AD590, LM35, LM75) and signal conditioning. Linear Position transducer: Strain gauge, Piezoelectric. Inductance change transducer: Linear variable differential transformer (LVDT), Capacitance change transducers. | Dr. Utpala
Baishya , | 21 | September | From 2/9/22 to 31/9/22 | | Unit V:
Digital
Multimeter | Comparison of analog and digital instruments. Block | Mr. Jayanta
Deka | 5 | October | From 1/10/22 to | | | diagram of digital multimeter, principle of measurement of I, V, C. Accuracy and resolution of measurement. | | | | 18/10/22 | |---|--|--|----|----------------------------|------------------------------------| | Unit VI:
Impedance
Bridges and
Q-meter | Block diagram and working principles of RLC bridge. Qmeter and its working operation. Digital LCR bridge. | Mr. Jayanta
Deka | 4 | October | From
19/10/22
to
27/10/22 | | Unit VII:
Vacuum
Systems | Characteristics of vacuum: Gas law, Mean free path. Application of vacuum. Vacuum system-Chamber, Mechanical pumps, Diffusion pump & Turbo Modular pump, Pumping speed, Pressure gauges (Pirani, Penning, ionization). | Mr. Jayanta
Deka | 12 | October
and
November | From 28/10/22 to 12/11/22 | | Lab | (Minimum number of experiments to be completed is seven) 14. Determine output characteristics of a LVDT & measure displacement using LVDT 15. Measurement of Strain using Strain Gauge. 16. Measurement of level using capacitive transducer. 17. To study the characteristics of a Thermostat and determine its parameters. | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr. Jayanta
Deka | 20 | November | From
13/11/22
to
30/11/22 | | 18. Study of distance | | | |---|--|--| | measurement using | | | | ultrasonic transducer. | | | | 19. Calibrate | | | | Semiconductor type | | | | temperature sensor | | | | (AD590, LM35, or
LM75) | | | | 20. To measure the change | | | | in temperature of | | | | ambient using | | | | Resistance | | | | Temperature Device | | | | (RTD). | | | | 21. Create vacuum in a | | | | small chamber | | | | using a mechanical | | | | (rotary) pump and | | | | measure the | | | | chamber pressure | | | | using a pressure | | | | gauge. | | | | 22. Comparison of | | | | pickup of noise in | | | | cables of different | | | | types (co-axial, | | | | single shielded, | | | | | | | | , | | | | without shielding) | | | | of 2m length, | | | | understanding of | | | | importance of | | | | grounding using | | | | function generator | | | | of mV level & an | | | | oscilloscope. | | | | 23. To design and study the Sample and Hold | | | | Circuit. | | | | 24. Design and analyze | | | | the Clippers and | | | | Clampers circuits | | | | using junction diode | | | |--|--|--| | 25. To plot the frequency | | | | response of a microphone. | | | | 26. To measure Q of a coil and influence of frequency, using a Q-meter | | | | | | | | Department | Physics | Semester | Fifth semester | |------------|---------------------------------|----------|----------------| | Subject | Nuclear and
Particle Physics | Credit | 6 | | Course | | Paper No | PHY-HE-5056 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Months | Date | |---|---|-----------------------------|-------|--------|------------------------| | Unit I:
General
Properties of
Nuclei | Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, | Dr.
Chandrama
Kalita, | 10 | August | From 1/8/22 to 13/8/22 | | | angular momentum, parity, magnetic moment, electric moments,
nuclear excites states. | | | | | |-------------------------------------|---|-----------------------------|----|-----------|----------------------------------| | Unit II:
Nuclear
Models | Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force. | Dr.
Chandrama
Kalita, | 12 | August | From 14/8/22 to 31/8/22 | | Unit III:
Radioactivity
decay | (a) Alpha decay: basics of α-decay processes, theory of α- emission, Gamow factor, Geiger Nuttall law, α-decay spectroscopy. (b) -decay: energy kinematics for -decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion. | Dr. Utpala
Baishya , | 10 | September | From 1/9/22 to 14/9/22 | | Unit IV:
Nuclear
Reactions | Types of Reactions,
Conservation Laws,
kinematics of reactions,
Q-value, reaction rate, | Dr. Utpala
Baishya , | 8 | September | From
15/9/22
to
25/9/22 | | | reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering). | | | | | |--|--|-------------------------|----|-------------------------|------------------------------------| | Unit V:
Interaction of
Nuclear
Radiation
with matter | Energy loss due to ionization (Bethe- Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter. | Mr.
Jayanta
Deka | 8 | September and October | From 26/9/22 to 14/10/22 | | Unit VI:
Detector for
Nuclear
Radiations | Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector. | Mr.
Jayanta
Deka | 8 | October | From
15/10/22
to
27/10/22 | | Unit VII:
Particle
Accelerators | Accelerator facility available in India: Vande Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons. | Dr. Utpala
Baishya , | 5 | October and
November | From 28/10/22 to 5/11/22 | | Unit VIII:
Particle | Particle interactions; | Mr. | 14 | November | From 6/11/22 | | physics | basic features, types of particles and its families. Symmetries and | Jayanta
Deka | to 25/11/22 | |---------|--|-----------------|-------------| | | Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number | | | | | and gluons. | | | Session: 2022-23 (August –December) | Department | Physics | Semester | Fifth semester | |------------|------------------------|----------|----------------| | Subject | WEATHER
FORECASTING | Credit | 4 | | Course | | Paper No | PHY-SE-5014 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|--|-----------------------------|-------|--------|---------------------------------| | Unit I:
Introduction
to
atmosphere | Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; atmospheric pressure: its measurement; | Dr.
Chandrama
Kalita, | 9 | August | From
1/8/22
to
20/8/22 | | | atmospheric boundary layer
and its characteristics;
atmospheric convection and
inversion; introduction to
numerical weather prediction
systems. | | | | | |--|--|-------------------------|---|-----------------------------|----------------------------------| | Unit II:
Measuring
the weather | Wind; forces acting to produce wind; measurement of wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws. | Dr. Utpala
Baishya , | 4 | August
and
September | From 21/8/22 to 1/9/22 | | Unit III:
Weather
systems | Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes, Indian summer monsoon. | Dr. Utpala
Baishya , | 3 | September | From 2/9/22 to 10/9/22 | | Unit IV:
Climate and
Climate
Change | Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate. | Dr. Utpala
Baishya , | 6 | September | From
11/9/22
to
19/9/22 | | Unit V:
Basics of
weather
forecasting | Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; | Mr.
Jayanta
Deka | 8 | September
and
October | From 20/9/22 to 20/10/22 | | | satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts. | | | | | |-----|---|---|---|----------------------------|---------------------------| | Lab | Study of synoptic charts & weather reports, working, principle of weather station. Processing and analysis of weather data (a) To calculate the sunniest time of the year. (b) To study the variation of rainfall amount and intensity by wind direction. (c) To observe the sunniest/driest day of the week. (d) To examine the maximum and minimum temperature throughout the year. (e) To evaluate the relative humidity of the day. (f) To examine the rainfall amount month wise. Exercises in chart reading: Plotting of constant pressure charts, surfaces charts, upper wind charts and its analysis. Formats and elements in different types of weather forecasts/ warning (both aviation and non aviation) | Dr. Chandrama Kalita, Dr. Utpala Baishya , Mr. Jayanta Deka | 8 | October
and
November | From 21/10/22 to 15/11/22 | | Department | Physics | Semester | Second semester | |------------|-------------------------|----------|-----------------| | Subject | Electricity & Magnetism | Credit | 6 | | Course | | Paper No | PHY-HC-2016 | | Remarks | | Marks | 100 | | Unit | Course conent | Allotted to | Hours | Month | Date | |---
---|-----------------------------|-------|----------------------------|-------------------------| | Unit I: Electric Field and Electric Potential | Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Unique- ness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. | Dr.
Chandrama
Kalita, | 26 | January
and
February | From 20/1/23 to 14/2/23 | | Unit II:
Dielectric
Properties
of Matter
(Lectures | Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector $\bar{\mathbf{D}}^{\rightarrow}$. Relations between $\bar{\mathbf{E}}^{\rightarrow}$, $\bar{\mathbf{P}}^{\rightarrow}$ and $\bar{\mathbf{D}}^{\rightarrow}$ Gauss' Law in dielectrics. | Dr. Utpala
Baishya , | 8 | February | From
15/2/23
to
27/2/23 | |--|---|------------------------------|---|--------------------------|----------------------------------| | Unit III:
Magnetic
Field | Magnetic Force on a point charge, definition and properties of magnetic field B→. Curl and Divergence. Vector potential A→. Magnetic Force on (1) a current carrying wire (2) between current elements. Torque on a current loop in a uniform magnetic field. Biot-Savart's law and its simple application: straight wire and circular loop. Current loop as a magnetic dipole and its dipole moment (analogy with electric dipole) Ampere's circuital law and its application to (1) Solenoid (2) Torus. | Dr. Utpala
Baishya, | 9 | February
and
March | From 28/2/23 to 14/3/23 | | Unit IV:
Magnetic
Properties
of Matter | Magnetization vector (M ⁺). Magnetic Intensity (H [→]). Magnetic Susceptibility and permeability. Relation between B [→] , H [→] , M ⁺ . Ferromagnetism. B-H curve and hysteresis. | ,
Dr. Utpala
Baishya , | 4 | March | From 15/3/23 to 24/3/23 | | Unit V: | Faraday's Law. Lenz's Law. | | 6 | March | From | | Electroma
gnetic
Induction | Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current. | Mr. Jayanta
Deka | | and April | 25/3/23
to 5/4/23 | |---|---|--|----|------------------|----------------------------------| | Unit VI:
Electrical
Circuits | AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) 13 Quality Factor, and (4) Band Width. Parallel LCR Circuit. | Mr. Jayanta
Deka | 4 | April | From 6/4/23 to 11/4/23 | | Unit VII:
Network
Theorems | Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits. | Mr. Jayanta
Deka | 3 | April | From
12/4/23
to
20/4/23 | | Unit VIII:
Ballistic
Galvanom
eter | Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR. | Dr. Utpala
Baishya , | 3 | April | From 21/4/23 to 27/4/23 | | Lab | A minimum of seven experiments to be done. 46. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses. | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr. Jayanta | 14 | April and
May | From 28/4/23 to 15/5/23 | | 47. To study the characteristics of a series RC Circuit. | Deka | | | |---|------|--|---| | 48. To determine an unknown Low Resistance using Potentiometer. | | | | | 49. To determine an unknown Low Resistance using Carey Foster's Bridge. | | | | | 50. To compare capacitances using De' Sauty's bridge. | | | | | strength B→ and its variation in a solenoid (determine dB). | | | _ | | 52. To verify the Thevenin and Norton theorems. | | | | | 53. To verify the Superposition, and Maximum power transfer theorems. | | | | | To determine self inductance of a coil by Anderson's bridge. | | | | | of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality | | | | | factor Q, and (d) Band width. | | | | | 56. To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant | | | | | frequency and (b) Quality factor Q. | | | | | 57. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer. 58. Determine a high resistance by leakage method using Ballistic Galvanometer. | |---| | 59. To determine self-inductance of a coil by Rayleigh's method. | | 60. To determine the mutual inductance of two coils by Absolute method. | | Department | Physics | Semester | Second semester | |------------|----------------|----------|-----------------| | Subject | Waves & Optics | Credit | 6 | | Course | | Paper No | PHY-HC-2026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|-----------------------------|-------|---------|-------------------------| | Unit I:
Superposition
of Collinear
Harmonic
Oscillations | Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences. | Dr.
Chandrama
Kalita, | 5 | January | From 20/1/23 to 27/1/23 | | Unit II:
Superposition
of Two
Perpendicular
Harmonic
Oscillations | Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses. | Dr.
Chandrama
Kalita, | 2 | January | From 28/1/23 to 30/1/23 | |--|--|-----------------------------|---|----------|----------------------------------| | Unit III: Wave Motion | Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. | Dr.
Chandrama
Kalita, | 4 | February | From 1/2/23 to7/2/23 | | Unit IV:
Velocity of
Waves | Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction. | Dr.
Chandrama
Kalita, | 6 | February | From 8/2/23 to16/2/23 | | Unit V:
Superposition
of Two
Harmonic
Waves | Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. | Dr. Utpala
Baishya , | 7 | February | From
17/2/23
to
26/2/23 | | | Transfer of Energy.
Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. Superposition of N Harmonic Waves. | | | | | |---------------------------|---|------------------------------|---|--------------------------|------------------------| | Unit VI:
Wave Optics | Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. | ,
Dr. Utpala
Baishya , | 3 | February
and
March | From 27/2/23 to5/3/23 | | Unit VII:
Interference | Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index. | Dr. Utpala
Baishya , | 9 | March | From 6/3/23 to 20/3/23 | | Unit VIII:
Interferometer | Michelson Interferometer- (1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, (5) Visibility of fringes. Fabry-Perot interferometer. | Mr. Jayanta
Deka | 4 | March | From 21/3/23 to 25/3/23 | |--------------------------------------|---|--------------------------|---|-----------------------|-------------------------| | Unit IX:
Diffraction | Fresnel and Fraunhofer diffraction. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel diffraction pattern of a straight edge and at a circular aperture . Resolving Power of a telescope. | ,
Mr. Jayanta
Deka | 9 | March
and
April | From 26/3/23 to 10/4/23 | | Unit X:
Fraunhofer
Diffraction | Single slit. Double slit. Multiple slits. Diffraction grating . Resolving power of grating. | Mr. Jayanta
Deka | 8 | April | From 11/4/23 to 28/4/23 | | Unit XI:
Holography | Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between | Mr. Jayanta
Deka | 3 | April | From 29/4/23 to 20/4/23 | | | two Plane Waves. Point source holograms. | | | | | |-----|--|---|----|---------------|-------------------------| | Lab | A minimum of seven experiments to be done. 1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ2 – T law. 2. To study Lissajous Figures. 3. Familiarization with: Schuster's focusing, determination of angle of prism. 4. To determine refractive index of the Material of a prism using sodium source. 5. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source. 6. To determine wavelength of sodium light using Fresnel Biprism. 7. To determine wavelength of sodium light using Newton's Rings. 8. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a | Dr. Chandrama Kalita, Dr. Utpala Baishya , Mr. Jayanta Deka | 16 | April and May | From 21/4/23 to 15/5/23 | | 9. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. 10. To determine dispersive power and resolving power of a plane diffraction grating. | wedge-shaped Film. | | |---|--|--| | | 9. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. 10. To determine dispersive power and resolving power of a | | | Department | Physics | Semester | Second semester | |------------|-------------------------|----------|--------------------| | Subject | Electricity & Magnetism | Credit | 6 | | Course | | Paper No | PHY-HG/RC-
2016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--------------------------------|---|-----------------------------|-------|----------------------------|------------------------| | Unit I :
Vector
Analysis | Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume | Dr.
Chandrama
Kalita, | 12 | January
and
February | From 20/1/23 to 6/2/23 | | | integrals of Vector fields,
Gauss-divergence theorem
and Stoke's theorem of
vectors (statement only). | | | | | |-----------------------------|--|-----------------------------|----|--------------------------|------------------------| | Unit II :
Electrostatics | Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem – Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. | , Dr. Utpala Baishya , | 22 | February
and
March | From 7/2/23 to 5/3/23 | | Unit III :
Magnetism | Magnetostatics: Biot- Savart's law & its applications — straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic | Dr.
Chandrama
Kalita, | 10 | March | From 6/3/23 to 18/3/23 | | | properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia, para, and ferro-magnetic materials. | | | | | |---|---|--|----|--------------------|-------------------------| | Unit IV:
Electromagne
tic Induction | Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field. | Mr. Jayanta
Deka | 6 | March | From 19/3/23 to 27/3/23 | | Unit V: Maxwell's Equations and EM Wave | Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. | ,
Mr. Jayanta
Deka | 10 | March
and April | From 28/3/23 to 17/4/23 | | Lab | for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses. 32. Ballistic Galvanometer (a) Measurement of charge and current sensitivity (b) Measurement of CDR (c) Determine a high resistance by | Dr.
Chandrama
Kalita,
Dr.
Utpala
Baishya,
Mr. Jayanta
Deka | 14 | April and
May | From 18/4/23 to 15/5/23 | | |
 |
 | |--|------|------| | Leakage Method | | | | (d) To determine Self
Inductance of a Coil
by Rayleigh's
Method. | | | | 33. To compare capacitances using De'Sauty's bridge. | | | | 34. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx). | | | | 35. To study the Characteristics of a Series RC Circuit. | | | | 36. To study the a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor | | | | 37. To study a parallel LCR circuit and determine its (a) Antiresonant frequency and (b) Quality factor Q. | | | | 38. To determine a Low
Resistance by Carey
Foster's Bridge. | | | | 39. To verify the Thevenin and Norton theorem. | | | | 40. To verify the Superposition, and Maximum Power Transfer Theorem. | | | | Department | Physics | Semester | Fourth semester | |------------|--------------------------|----------|-----------------| | Subject | Mathematical Physics III | Credit | 6 | | Course | | Paper No | PHY-HC-4016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|--|-------------------------|-------|----------------------------|-------------------------| | Unit I:
Complex
Analysis | Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity. | Dr. Utpala
Baishya , | 10 | January
and
February | From 20/1/23 to 6/2/23 | | Unit II:
Comple
x
Integrati
on | Integration of a function of a complex variable. Cauchys Integral formula. Simply and multiply connected region. Laurent and Taylors expansion. Residues and Residue Theorem with numerical application. | Dr. Utpala
Baishya , | 10 | February | From 7/2/23 to 20/2/23 | | Unit III:
Fourier
Transfor
ms | Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier trans- form of trigonometric, Gaussian functions Representation of Dirac delta | Dr. Utpala
Baishya , | 15 | February
and
March | From 21/2/23 to 10/3/23 | | | function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem (Statement only). Properties of Fourier transforms (translation, change of scale, complex conjugation). | | | | | |---------------------------------------|---|-------------------------|----|--------------------|-------------------------| | Unit IV:
Laplace
Transfor
ms | Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem (Statement only). Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations: Damped Harmonic Oscillator. | Dr. Utpala
Baishya , | 15 | March | From 11/3/23 to 29/3/23 | | Unit V:
Tensor
Algebra | Introduction to tensor, Transformation of co-ordinates, Einsteins summation convention. contravariant and co- variant tensor, tensorial character of physical quantities, symmetric and antisymmetric tensors, kronecker delta, Levi-Civita tensor. Quotient law of tensors, Raising and lowering of indices Rules for combination of tensors- addition, subtraction, outer multiplication, contraction and inner multiplications. | Dr. Utpala
Baishya , | 10 | March
and April | From 30/3/23 to 20/4/23 | | Lab | 23. Solve differential equations | Dr. Utpala | 15 | April and | From | | 4/23 | |------| | 5/23 |
 | |--|------| | without giving | | | weightage to error. | | | Confirmation of least | | | square fitting of data | | | through computer | | | program. | | | 29. Evaluation of | | | trigonometric | | | functions e.g. $\sin \theta$, | | | ,given | | | Bessel's functionat N | | | points find its value | | | at an intermediate | | | point. | | | 30. Integrate | | | 1 | | | $\overline{(x^2+2)}$ | | | Numerically in a | | | given interval. | | | | | | Compute the nth roots of | | | unity for n=2, 3, and 4. | | | 32. Find the two square roots of $5+12j$. | | | Integral transform | | | Evaluate FFT of | | | e^{-x^2} | | | 33. Solve Kirchoff's | | | current law for any | | | node of an arbitrary | | | circuit using | | | Laplace's transform. | | | | | | | | | Department | Physics | Semester | Fourth semester | |------------|-------------------------------|----------|-----------------| | Subject | | Credit | 6 | | | Elements of Modern
Physics | | | | Course | | Paper No | PHY-HC-4026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|---------------------|-------|----------------------------|------------------------| | Unit I:
Quantum
Theory and
Blackbody
Radiation | Quantum theory of light; photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. group and phase velocities and relation between them. Two-slit experiment with electrons. Probability. wave amplitude and wave functions. | Mr. Jayanta
Deka | 12 | January
and
February | From 20/1/23 to 6/2/23 | | Unit II: Uncertainty and Wave- Particle Duality | Position measurement: gamma ray microscope thought experiment; wave- particle duality, Heisenberg uncertainty principle (Uncertainty relations involving Canonical pair of | Mr. Jayanta
Deka | 5 | February | From 7/2/23 to 16/2/23 | | | variables): Derivation from wave packets, impossibility of a particle following a trajectory; estimating minimum energy of a confined particle using uncertainty principle; energy-time uncertainty principle- application to virtual particles and range of an interaction. | | | | | |--|---|---------------------|---|--------------------------|------------------------| | Unit III:
Schrödinger
Equation | Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrödinger equation for non- relativistic particles; expectation value, momentum and energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; probability and probability current densities in one dimension. | Mr. Jayanta
Deka | 8 | February
and
March | From 17/2/23 to 1/3/23 | | Unit IV:
One-
dimensional
Box and
Step Barrier | One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; quantum dot as example; quantum mechanical scattering and tunnelling in one dimension- | Mr. Jayanta
Deka | 9 | March | From 2/3/23 to 16/3/23 | | | , | T | | I | | |---|---|---------------------|---|--------------------|-------------------------------| | | across a step potential and | | | | | | | rectangular potential barrier. | | | | | | | | | | | | | Unit V:
Structure of
the Atomic
Nucleus | Size and structure of atomic nucleus and its relation with atomic weight; impossibility of an electron being in liquid drop model: semi-empirical mass formula | Mr. Jayanta
Deka | 6 | March | From 17/3/23 to 25/3/23 | | | and binding energy, nuclear shell model (qualitative discussions) and magic numbers. | | | | | | Unit VI:
Radioactivity | Stability curve and stability of nuclei, Law of radioactive decay, disintegration constant, half life and mean life. Activity unit. Alpha decay – Range energy relation, Fine structure of alpha energy spectrum. Beta decay energy released, continuous
beta spectrum and Pauli's prediction of neutrino. Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus. | Mr. Jayanta
Deka | 8 | March
and April | From 26/3/23 to 10/4/23 | | Unit VII:
Detection of
nuclear
radiation | Method of energy loss by charged particles and gamma photons. Photoelectric, Compton and Pairproduction processes Gas filled detectors — principle and construction of a gas filled detector, Ionization, proportional, GM and spark region. | Mr. Jayanta
Deka | 4 | April | From
11/4/23 to
25/4/23 | | Unit VIII:
Fission and
Fusion | Energy consideration in Nuclear Reaction, Q-value of nuclear reaction, Mass deficit, Einstein's mass-energy equivalence principle and generation of nuclear energy. Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235. Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions). | Mr. Jayanta
Deka | 4 | April and
May | From 26/4/23 to 6/5/23 | |-------------------------------------|---|---------------------|----|------------------|-------------------------| | Unit IX:
Lasers | Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. Basic lasing. | Mr. Jayanta
Deka | 4 | May | From 7/5/23 to 12/5/23 | | Lab | A minimum of six experiments to be done. 27. Measurement of Planck's constant using black body radiation and photo-detector. 28. Photo-electric effect Photo current versus intensity and wavelength of light; maximum energy of photo-electrons | Mr. Jayanta
Deka | 16 | May | From 13/5/23 to 30/5/23 | | |
1 | |---|-------| | versus frequency of | | | light. | | | 29. To determine work function of material of filament of directly heated vacuum diode. | | | 30. To determine the Planck's constant using LEDs of at least 4 different colours. | | | $_{31}$. To determine the wavelength of H $ \alpha$ emission line of hydrogen atom. | | | 32. To determine the ionization potential of mercury. | | | 33. To determine the absorption lines in the rotational spectrum of iodine vapour. | | | 34. To determine the value of e/m by (a) magnetic focusing or (b) bar magnet. | | | 35. To setup the Millikan oil drop apparatus and determine the charge of an electron. | | | 36. To show the tunneling effect in tunnel diode using I – V characteristics. | | | 37. To determine the wavelength of laser source using diffraction of single slit. | | | 38. To determine the wavelength of laser source using diffraction of double slits. | | | 39. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating. | | | | |--|--|--|--| |--|--|--|--| | Department | Physics | Semester | Fourth semester | |------------|----------------------------------|----------|-----------------| | Subject | Analog Systems
& Applications | Credit | 6 | | Course | | Paper No | PHY-HC-4036 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |------------------------------------|---|-----------------------------|-------|----------------------------|------------------------| | Unit I:
Semiconductor
Diodes | P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for | Dr.
Chandrama
Kalita, | 10 | January
and
February | From 20/1/23 to 6/2/23 | | | Barrier Potential, Barrier Width and Current for Step Junction. Current flow mechanism in Forward and Reverse Biased Diode. | | | | | |---|---|-----------------------------|----|--------------------------|------------------------| | Unit II: Two-
terminal
Devices and
their
Applications | (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell. | Dr.
Chandrama
Kalita, | 6 | February | From 7/2/23 to 20/2/23 | | Unit III:
Bipolar
Junction
Transistors | $n-p-n$ and $p-n-p$ Transistors. Characteristics of CB, CEand CC Configurations. Current gains α and β . Relations between α and β . Load Line analysis of Transistors. DC Load line and Q -point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. | Dr.
Chandrama
Kalita, | 6 | February
and
March | From 20/2/23 to 1/3/23 | | Unit IV:
Amplifiers | Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. <i>h</i> - parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid | Dr.
Chandrama
Kalita, | 10 | March | From 2/3/23 to 15/3/23 | | | Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class <i>A</i> , <i>B</i> & <i>C</i> Amplifiers. | | | | | |--|---|-----------------------------|---|--------------------------|----------------------------------| | Unit V:
Coupled
Amplifier | Two stage RC-coupled amplifier and its frequency response. | Dr.
Chandrama
Kalita, | 4 | March | From 16/3/23 to 23/3/23 | | Unit VI:
Feedback in
Amplifiers | Effects of Positive and
Negative Feedback on Input
Impedance, Output
Impedance, Gain, Stability,
Distortion and Noise. | Dr.
Chandrama
Kalita, | 4 | February
and
March | From 24/3/23 to 31/3/23 | | Unit VII:
Sinusoidal
Oscillators | Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. | Dr.
Chandrama
Kalita, | 4 | April | From 1/4/23 to 10/4/23 | | Unit VIII: Operational Amplifiers (Black Box approach) | Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. | Dr.
Chandrama
Kalita, | 9 | April | From
11/4/23
to
27/4/23 | | Unit IX:
Applications
of Op-Amps | (3) Inverting and non-
inverting amplifiers, (2)
Adder, (3) Subtractor, (4)
Differentiator, (5)
Integrator, (6) Log | Dr.
Chandrama
Kalita, | 9 | April
and May | From 28/4/23 to 10/5/23 | | Unit X:
Convversion | amplifier, (7) Zero crossing detector (8) Wein bridge oscillator. Resistive network (Weighted and R – 2R Ladder). Accuracy and Resolution. A/D Conversion (successive | Dr.
Chandrama
Kalita, | 3 | May | From 11/5/23 to 15/5/23 | |------------------------|---|-----------------------------|---|-----|-------------------------| | | approximation). | - | | | | | Lab | A minimum of eight experiments to be done. To study V - I characteristics of PN junction diode, and Light emitting diode. To study the V - I characteristics of a Zener diode and its use as voltage regulator. Study of V - I & power curves of solar cells, and find maximum power point & effciency. To study the characteristics of a Bipolar Junction Transistor in CE configuration. To study the various biasing configurations of BJT for normal class A operation. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias. To study the frequency response of voltage gain of a
RC-coupled transistor amplifier. | Dr.
Chandrama
Kalita, | 9 | May | From 15/5/23 to 25/5/23 | | 8. To design a Wien | | | |----------------------------|--|--| | bridge oscillator for | | | | given frequency using | | | | an op-amp. | | | | 9. To design a phase shift | | | | oscillator of given | | | | specifications using | | | | BJT. | | | | 10. To study the Colpitt's | | | | oscillator. | | | | 11. To design a digital to | | | | analog converter | | | | (DAC) of given | | | | specifications. | | | | 12. To study the analog to | | | | digital convertor | | | | (ADC) IC. | | | | 13. To design an inverting | | | | amplifier using Op-amp | | | | (741/351) for dc | | | | voltage of given gain. | | | | 14. To design inverting | | | | amplifier using Op-amp | | | | (741/351) and study its | | | | frequency response. | | | | 15. To design non- | | | | inverting amplifier | | | | using Op-amp | | | | (741/351) & study its | | | | frequency response. | | | | 16. To study the zero- | | | | crossing detector and | | | | comparator. | | | | 17. To add two dc voltages | | | | using Op-amp in | | | | inverting and non- | | | | inverting mode. | | | | 18. To design a precision | | | | Differential amplifier | | | | of given I/O | | | | specification using Op- | | | | amp. | | | | 19. To investigate the use | | | | of an op-amp as an | | | | Integrator. | | | | 20. To investigate the use of an op-amp as a Differentiator. | | |--|--| |--|--| | Department | Physics | Semester | Fourth semester | |------------|----------------|----------|-----------------| | Subject | | Credit | 6 | | | Waves & Optics | | | | | | | | | Course | | Paper No | | | | | | PHY-HG/RC- | | | | | 4016 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|--|---------------------------------|-------|----------------------------|-------------------------| | Unit I:
Superpositio
n of Two
Collinear
Harmonic
Oscillations | Linearity & Superposition Principle. (1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats). | Dr.
Chandra
ma
Kalita, | 4 | January | From 20/1/23 to 27/1/23 | | Unit II:
Superpositio
n of Two
Perpendicula
r Harmonic
Oscillations | Graphical and Analytical Methods. Lissajous Figures Dr. Chandrama Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka with equal an unequal frequency and their uses. | Dr.
Chandra
ma
Kalita, | 2 | January
and
February | From 28/1/23 to 1/2/23 | | Unit III:
Waves
Motion | General: Transverse waves on
a string. Travelling and
standing waves on a string.
Normal Modes of a string.
Groupvelocity, Phase
velocity. Plane waves.
Spherical waves, Wave
intensity. | Dr.
Chandra
ma
Kalita, | 7 | February | From 2/2/23 to 10/2/23 | |------------------------------|--|---------------------------------|---|--------------------------|-------------------------| | Unit IV:
Fluids | Surface Tension: Synclastic and anticlastic surface — Excess of pressure — Application to spherical and cylindrical drops and bubbles — variation of surface tension with temperature — Jaegar's method. Viscosity — Rate flow of liquid in a capillary tube — Poiseuille's formula — Determination of coefficient of viscosity of a liquid — Variations of viscosity of liquid with temperature — lubrication. | Dr.
Chandra
ma
Kalita, | 6 | February | From 11/2/23 to 21/2/23 | | Unit V :
Sound | Simple harmonic motion - forced vibrations and resonance - Fourier's Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine's formula - measurement of reverberation time - Acoustic aspects of halls and auditoria. | Dr.
Utpala
Baishya, | 6 | February
and
March | From 22/2/23 to 1/3/23 | | Unit VI:
Wave Optics | Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle. | Dr.
Utpala
Baishya ,
Mr. | 3 | March | From 2/3/23 to 8/3/23 | |---|--|-----------------------------------|----|--------------------|-------------------------| | Unit VII: Interference | Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination and Fringes of equal thickness. Newton's Rings: measurement of wavelength. Michelson's Interferometer: Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength difference, Refractive index Visibility of fringes. | Dr.
Utpala
Baishya, | 10 | March | From 9/3/23 to 22/3/23 | | Unit VIII:
Michelson
Interferomete
r | (3) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Refractive Index. (4) Visibility of fringes. | Mr.
Jayanta
Deka | 3 | March | From 23/3/23 to 26/3/23 | | Unit IX :
Diffraction | Fresnel and Fraunhofer diffraction . Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propa- gation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel diffraction pattern of a straight edge and at a circular aperture . Resolving Power of a telescope. | Mr.
Jayanta
Deka | 14 | March
and April | From 27/3/23 to 12/4/23 | | | Fraunhofer diffraction due to a Single slit, Diffraction grating. Resolving power of grating. | | | | | |--------------------------|---|---|----|---------------|-------------------------| | Unit X :
Polarization | Transverse nature of light waves. Double Refraction, Plane, circular and elliptically polarized light, Production and analysis of polarized light. Retarding plates. | Mr.
Jayanta
Deka | 5 | April | From 13/4/23 to 20/4/23 | | Lab | A minimum of five experiments to be done. 1. To study the variation in liquid column height with diameter of capillary tube and determine the surface tension of the liquid. 2. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde's Experiment and to verify Z² — T Law. 3. To determine the coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method) 4. To determine the focal length of a convex mirror with the help of convex lens. 5. To determine the refractive index of a liquid | Dr. Chandra ma Kalita, Dr. Utpala Baishya, Mr. Jayanta Deka | 14 | April and May | From 21/4/23 to 15/5/23 | | by using plane mirror and convex lens. 6. To determine the focal length of two lenses and their combination by displacement method. 7. Familiarization with Schuster's focussing; determination of angle of | | | |---|--|--| | prism. 8. To determine the Refractive Index of the Material of a Prism using Sodium Light. 9. To determine wavelength of sodium light using Newton's Rings. | | | | Physics | Semester | Fourth semester | |-----------|----------|---------------------| | Photoshop | Credit | 4 | | | Paper No | PHY-SE-4044 | | | Marks | 100 | | | | Photoshop Paper No | | Unit | Course content | Allotted to | Hours | Month | Date | |--|--|---|-------|----------------------------|---------------------------| | Unit I:
Getting
Started
with Adobe
Photoshop
CC | Overview of Adobe Photoshop
CC, Features of Adobe
Photoshop CC | Dr.
Chandrama
Kalita, | 3 | January | From 20/1/23 to 27/1/23 | | Unit II:
Importance
of
Adobe
Photoshop
CC | Overview of Tools Used in
Adobe Photoshop CC,
Importance of Adobe
Photoshop CC | Dr.
Chandrama
Kalita, | 5 | January
and
February | From 28/1/23 to 2/2/23 | | Unit III:
Working
with
Typography | Typography, Creating Typographies, Choosing the Right Font and Color | Dr.
Chandrama
Kalita, | 4 | February | From 3/2/23
to 7/2/23 | | Unit IV:
Working
with Layers
and Images | Cropping a Photo, Resizing Images, Basics of Layers, Creating Layers for Print and Digital Media, Aligning Images within Multiple Layers, Merging Layer Techniques | ,
Dr. Utpala
Baishya , | 6 | February | From 8/2/23
to 16/2/23 | | Unit V:
Working
with Filters | Photoshop Filters, Smart
Filters, Common Features of
Photoshop Filter | Dr. Utpala
Baishya , | 4 | February | From 8/2/23
to 16/2/23 | | Unit VI: Digital Painting in Adobe Photoshop CC | Working with Brush Tool,
Importance of Using Colors | ,
Mr.
Jayanta
Deka | 4 | February | From 17/2/23 to 20/2/23 | | Unit VII:
Masking
and File
Formats in
Adobe
Photoshop
CC | Introduction to Mask, Creating Vector and Layer Masks, Essential File Formats, Choosing the Right Format for Printand Digital Media | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr.
Jayanta
Deka | 4 | February
and
March | From 21/2/23 to 5/3/23 | | Department | Physics | Semester | Six semester | |------------|---------------------------|----------|--------------| | Subject | Electromagnetic
Theory | Credit | 6 | | Course | | Paper No | PHY-HC-6016 | | Remarks | | Marks | 100 | | | Momentum Density and Angular Momentum | | | | | |---|---|----------------------------|----|--------------------------|------------------------| | | Density. | | | | | | Unit II: EM Wave Propagation in Unbounded Media | Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma, electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. | Dr.
Chandrama
Kalita | 10 | February | From 6/2/23 to 21/2/23 | | Unit III: EM
Wave in
Bounded Media | Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients. Total | Dr.
Chandrama
Kalita | 10 | February
and
March | From 22/2/23 to 5/3/23 | | | internal reflection, evanescent waves. Metallic reflection (normal Incidence). | | | | | |--|---|----------------------------|----|-----------------------|------------------------| | Unit IV: Polarization of Electromagnetic Waves | Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half- Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light. | Dr.
Chandrama
Kalita | 12 | March | From 6/3/23 to 20/3/23 | | Unit V:
Rotatory
Polarization | Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification | Dr.
Chandrama
Kalita | 8 | March
and
April | From 21/3/23 to 5/4/23 | | | of Fresnel's theory. Specific rotation. Laurent's half-shade polarimeter. (5 Lectures) Wave Guides: Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves. Field energy and Power transmission. | | | | | |----------------------------|--|----------------------------|---|-------|------------------------| | Unit VI: Optical
Fibres | Numerical Aperture. Step
and Graded Indices
(Definitions Only).
Single and Multiple
Mode Fibres (Concept
and Definition Only). | Dr.
Chandrama
Kalita | 3 | April | From 6/4/23 to 12/4/23 | | Lab | 13. To verify the law of Malus for plane polarized light. | Dr.
Chandrama
Kalita | 16 | April
and May | From
13/4/23
to
15/5/23 | |-----|--|----------------------------|----|------------------|----------------------------------| | | 14. To determine the specific rotation of sugar solution using Polarimeter. | | | | 18/8/28 | | | 15.To analyze elliptically polarized Light by using a Babinet's compensator. | | | | | | | dependence of radiation on angle for a simple Dipole antenna. | | | | | | | 17.To determine the wavelength and velocity of ultrasonic | | | | | | | waves in a liquid (Kerosene Oil, | | | | | | | Xylene, etc.) by studying the diffraction through | | | | | | | ultrasonic grating. 18. To study the | | | | | | | reflection, refraction of microwaves. 19. To study | | | | | | | Polarization and double slit interference in microwaves. | | | | | | | 20. To determine the refractive index of liquid by total internal | | | | | | |
 | |--|------| | reflection using Wollaston's air-film. | | | | | | 21. To | | | determine the | | | refractive Index | | | of (1) glass and | | | (2) a liquid by | | | total internal | | | reflection using | | | a Gaussian | | | eyepiece. | | | 22. To study the polarization of light by reflection and determine the polarizing angle for air-glass interface. | | | 23. To verify the Stefan's law of radiation and to determine Stefan's constant. | | | 24. To determine the Boltzmann constant using V – I characteristics of PN junction diode. | | | Department | Physics | Semester | Six semester | |------------|--------------------------|----------|--------------| | Subject | Statistical
Mechanics | Credit | 6 | | Course | | Paper No | PHY-HC-6026 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |---|---|-----------------------------|-------|----------------------------|----------------------------------| | Unit I:
Classical
Statistics | Macrostate & Microstate, Elementary Concept of Ensemble, Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature. | Dr.
Chandrama
Kalita, | 18 | January
and
February | From 20/1/23 to 12/2/23 | | Unit II:
Classical
Theory of
Radiation | Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's | Dr.
Chandrama
Kalita, | 9 | February | From
13/2/23
to
24/2/23 | | | Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh- Jean's Law. Ultraviolet Catastrophe. | | | | | |--|--|------------------------------|----
--------------------------|-------------------------| | Unit III:
Quantum
Theory of
Radiation | Spectral Distribution of Black Body Radiation. Planck's Quantum Postulates. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law. | Dr. Utpala
Baishya , | 5 | February
and
March | From 25/2/23 to 3/3/23 | | Unit IV:
Bose-
Einstein
Statistics | B-F distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck's law. | ,
Dr. Utpala
Baishya , | 13 | March | From 4/3/23 to 20/3/23 | | Unit V:
Fermi-
Dirac
Statistics | Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit. | ,
Mr.
Jayanta
Deka | 15 | March
and
April | From 21/3/23 to 10/4/23 | | Lab | Use C/C++/Scilab/other numerical simulations for solving | Dr. Utpala
Baishya , | 16 | April and May | From 11/4/23 | | the mobile and hard a Court of 1 | T | | to | |--|---------|--|---------------| | the problems based on Statistical Mechanics. | Mr. | | to
10/5/23 | | Mechanics. | Jayanta | | 10/3/23 | | 1. Computational analysis of | Deka | | | | the behavior of a collection | | | | | of particles in a box that | | | | | satisfy Newtonian | | | | | mechanics and interact via | | | | | the Lennard-Jones potential, | | | | | varying the total number of | | | | | particles N and the initial | | | | | conditions: | | | | | (a) Study of local number density in the equilibrium | | | | | state (i) average; (ii) fluctuations. | | | | | (b) Study of transient behaviour of the system (approach to equilibrium). | | | | | (c) Relationship of large N and the arrow of time. | | | | | (d) Computation of the | | | | | velocity distribution | | | | | of particles for the | | | | | system and | | | | | comparison with the | | | | | Maxwellvelocity | | | | | distribution. | | | | | (e) Computation and study of mean molecular speed and its dependence on particle mass. | | | | | (f) Computation of fraction of molecules in an ideal gas having speed near the most probable speed | | | | | 2. Computation of the partition function $Z(\beta)$ for | | | | | examples of systems with a | | | | finite number of single particle levels (e.g., 2 level, 3 level, etc.) and a finite number of non-interacting particles N under Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics: (a) Study of how $Z(\beta)$, average energy (E),energy fluctuation ΔE , specific heat at constant volumeC_P, depend upon the temperature, total number of particles Nand the spectrum of single particle states. (b) Ratios of occupation numbers of various states for the systems considered above. (c) Computation of physical quantities at large and small temperature Tand comparison of various statistics at large and small temperature *T*. 3. Plot Planck's law for Black Body radiation and compare it with Raleigh-Jeans Law at high temperature and low temperature. 4. Plot Specific Heat of Solids (a) Dulong-Petit law, (b) Einstein | distribution function, (c) | | | |---|--|--| | Debye distribution | | | | function for high | | | | temperature and low | | | | temperature and compare | | | | them for these two cases. | | | | 5. Plot the following functions with energy at different temperatures | | | | (a) Maxwell-Boltzmann distribution | | | | (b) Fermi-Dirac distribution | | | | (c) Bose-Einstein distribution | | | | | | | | Department | Physics | Semester | Six semester | |------------|----------------------------|----------|--------------| | Subject | Astronomy and Astrophysics | Credit | 6 | | Course | | Paper No | PHY-HE-6046 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted | Hours | Month | Date | |---------------------------------------|---|--------------------------|-------|----------------------------|-------------------------| | Unit I:
Stellar
properties | Radiant flux and Luminosity, Magnitude scale. Measurement of astronomical quantities: Stellar distances(parallax), Radii, Mass and Effective Temperature. Equilibrium of stars, Gravity and thermodynamics, virial theorem. Stellar spectral classification — Hertzsprung-Russell (HR) diagram. Introductory idea of stellar evolution: white dwarf, neutron stars and black holes. | Dr.
Utpala
Baishya | 15 | January
and
February | From 20/1/23 to 10/2/23 | | Unit II: The Sun and the solar system | The Sun; properties of photosphere, chromosphere and corona. Solar system's objects: Theory of formation of the solar system (introductory idea only); physical properties of the planets- their distances, atmospheres, asteroid belt, meteorites and the comets – Kuiper belt and the Oort cloud; Introduction to Extra-Solar Planets. | Dr.
Utpala
Baishya | 15 | February
and
March | From 11/2/23 to 5/3/23 | | Unit III:
Positional
Astronomy | Celestial sphere, spherical geometry and celestial coordinates. Concept of time: universal time, solar time, mean solar time, local sidereal time and Julian day. Introduction to constellations (hands on practice in evening sky with small telescopes or laser pointer), ecliptic and diurnal motion of stars. Solar system's objects: | Dr.
Utpala
Baishya | 10 | March | From 6/3/23 to 18/3/23 | | | rotation, revolution and coordinates in the sky. | | | | | |---|---|--------------------------|----|-----------------------|-------------------------| | Unit IV:
Astronomical
Techniques | Introduction to telescopes – telescope size and light gathering power, resolving power, f-number. Different types of optical telescopes (reflecting and refracting). Space telescopes. Concept of virtual observatory, on-line tools in astronomy: SDSS, SkyView, SIMBAD, Aladin, AAVSO database etc. Introduction to photometry, spectroscopy and polarimetry. | Dr.
Utpala
Baishya | 10 | March
and
April | From 19/3/23 to 1/4/23 | | Unit V:
Galaxies | The Milky Way, properties of the galactic centre. Classification of galaxies, Hubble's tuning fork diagram, normal (spiral, elliptical and lenticular) and active galaxies. Black holes in galaxies. | Dr.
Utpala
Baishya | 10 | April | From 2/4/23 to 20/4/23 | | Unit VI:
Large Scale
Structure and
Cosmology | Distance ladder in cosmology,
Cepheid variables. Cosmic
expansion of the universe and
Hubble(- Lemaitre) law. Clusters
of galaxies and dark matter -
virial theorem. Concept of the
Hot Big Bang, Oscillating
Universe, Cosmic Microwave
Background (CMB). | Dr.
Utpala
Baishya | 15 | April
and May | From 21/4/23 to 15/5/23 | | Department | Physics | Semester | Six semester | |------------|---------------------------------------|----------|--------------| | Subject | PHYSICS-DSE:
CLASSICAL
DYNAMICS | Credit | 6 | | Course | | Paper No | PHY-HE-6056 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted | Hours | Month | Date | |--|---|------------------------|-------|----------------------------|-------------------------| | | | to | | | | | Unit I:
Classical
Mechanics of
Point
Particles | Review of Newtonian Mechanics; Application to the motion of a charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field- gyroradius and gyrofrequency, motion in crossed electric and magnetic fields.constraints, Generalized coordinates and velocities, principle of virtual work, D,Alembert's principle,Hamilton'sprinciple, Lagrangian and the Euler-Lagrange equations, one-dimensional examples of the Euler-Lagrange equations- one-dimensional Simple Harmonic Oscillations and falling body in uniform gravity; applications to | Mr.
Jayanta
Deka | | January
and
February | From 20/1/23 to 20/2/23 | | | simple systems such as coupled oscillators Canonical momenta & Hamiltonian. Hamilton's equations of motion. Applications: Hamiltonian for a harmonic oscillator, solution of Hamilton's equation for Simple Harmonic Oscillations; particle in a central force
field-conservation of angular momentum and energy. | | | | | |---|---|------------------------|----|--------------------------|-------------------------| | Unit II:
Small
Amplitude
Oscillations | Minima of potential energy and points of stable equilibrium, expansion of the potential energy around a minimum, small amplitude oscillations about the minimum, normal modes of oscillations example of N identical masses connected in a linear fashion to (N-1) - identical springs. | Mr.
Jayanta
Deka | 10 | February
and
March | From 21/2/23 to 10/3/23 | | Unit III:
Special
Theory of
Relativity | Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time-dilation, length contraction and twin paradox. Four-vectors: space- like, time-like and light-like. Four-velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four-vector perspective. Concept of four- | Mr.
Jayanta
Deka | 33 | March
and
April | From 11/3/23 to 25/4/23 | | | force. Conservation of four-
momentum. Relativistic
kinematics. Application to two-
body decay of an unstable
particle. | | | | | |-------------------------------|---|------------------------|----|------------------|-------------------------| | Unit IV:
Fluid
Dynamics | Density ρ and pressure <i>P</i> in a fluid, an element of fluid and its velocity, continuity equation and mass conservation, streamlined motion, laminar flow, Poiseuille's equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number. | Mr.
Jayanta
Deka | 10 | April
and May | From 25/4/23 to 10/5/23 | | Department | Physics | Semester | Six semester | |------------|---|----------|--------------| | Subject | RENEWABLE
ENERGY AND
ENERGY
HARVESTING | Credit | 4 | | Course | | Paper No | PHY-SE-6024 | | Remarks | | Marks | 100 | | Unit | Course content | Allotted to | Hours | Month | Date | |--|---|-----------------------------|-------|--------------------------------|-------------------------| | Unit I: Fossil fuels and Alternate Sources of energy | Fossil fuels and Nuclear Energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. | Dr.
Chandrama
Kalita, | 3 | January | From 20/1/23 to 27/1/23 | | Unit II: Solar energy | Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. | Dr.
Chandrama
Kalita, | 6 | January
and
Februar
y | From 28/1/23 to 6/2/23 | | Unit III: Wind
Energy
harvesting | Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. | Dr. Utpala
Baishya , | 3 | Februar
y | From 7/2/23 to 13/2/23 | |--|---|------------------------------|---|---------------------------|-------------------------| | Unit IV: Ocean
Energy | Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. | ,
Dr. Utpala
Baishya , | 3 | Februar
y | From 14/2/23 to 20/2/23 | | Unit V: | Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass. | Dr. Utpala
Baishya, | 2 | Februar
y | From 20/2/23 to 25/2/23 | | Unit VI:
Geothermal
Energy | Geothermal Resources,
Geothermal Technologies. | Dr. Utpala
Baishya , | 2 | Februar
y and
March | From 26/2/23 to 1/3/23 | | Unit VII:
Hydro Energy | Hydropower resources,
hydropower technologies,
environmental impact of
hydro power sources. | Mr. Jayanta
Deka | 2 | March | From 2/3/23 to 5/3/23 | | Unit VIII: Piezoelectric Energy harvesting | Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modelling | Mr. Jayanta
Deka | 4 | March | From 6/3/23 to 15/3/23 | | | piezoelectric generators, Piezoelectric energy harvesting applications, Human power. | | | | | |--|--|--|---|-------|-------------------------| | Unit IX:
Electromagneti
c Energy
Harvesting | Linear generators, physics
mathematical models, recent
applications | ,
Mr. Jayanta
Deka | 2 | March | From 16/3/23 to 20/3/23 | | Unit X: | Carbon captured technologies, cell, batteries, power consumption | Mr. Jayanta
Deka | 2 | March | From 21/3/23 to 29/3/23 | | Unit XI: | Environmental issues and Renewable sources of energy, sustainability. | ,
Mr. Jayanta
Deka | 1 | March | From 30/3/23 to 31/3/23 | | Demonst rations and Experime nts | 4. Demonstration of Training modules on Solar energy, wind energy, etc. 5. Conversion of vibration to voltage using piezoelectric materials 6. Conversion of thermal energy into voltage using thermoelectric modules. | Dr.
Chandrama
Kalita,
Dr. Utpala
Baishya,
Mr. Jayanta
Deka | 6 | April | From 1/4/23 to 20/4/23 |