Department of Mathematics S.B.M.S.College,Sualkuchi B.Sc. Honours & Regular Courses

The department of Mathematics, S.B.M.S. College, Sualkuchi is affiliated to Gauhati University. The department follows the course curriculum framed and designed by Gauhati University.

The CBCS Course curriculum introduced by Gauhati University is divided into two parts : one is Honours Course and other is Regular course. The honours Course help the students to enrich their Knowledge on the subject and the regular course help the students to make integration with other various courses.

PROGRAMME OUTCOMES:

- Students will be able to communicate mathematics effectively by oral, written, computational and graphic means.
- > Create mathematical ideas from basic axioms.
- Utilize mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.
- > Create a mathematical sense and overall understanding of the subject.
- Will become familiar with the different aspects of mathematics with its various interpretations and with the requirement of lifelong learning through continued education and research.

PROGRAMME SPECIFIC OUTCOMES:

- Students will be able to apply critical thinking skills to solve problems that can be modelled mathematically.
- > Able to learn algebra, abstract algebra, linear algebra and vector.
- > Understand calculus and differential equations.
- > Able to learn real, numerical and complex Analysis.
- > Able to learn Group Theory, Ring Theory, Number Theory and Analytical Geometry.
- > Able to learn and apply the Computer Programming in C
- > Able to plot Graphs, Numerical Programmes, Solution of PDE's by using software.
- Able to undertake project work.

COURSE OUTCOMES: (Honours Course)

Semester	Course Code	Course Name	Course outcome
Ι	MAT-HC-	Calculus	After Completion of this course the Students will
	1016		be known about:
			Learn to differentiate & integrate
			functions and apply the knowledge in
			solving problems in business, economics
			and life sciences.
			Sketch curves in a plane using its
			mathematical properties in different
			coordinate system
			 Learn the Calculus of Vector functions
			and its uses to develop the basic

			 principles of planetary motion. Learn to find the area of surface of revolution and volume of solid by integrating over cross sectional area.
	MAT-HC- 1026	Algebra	 The course enable the students to learn: About Functions, Relation, Equivalent Classes and Cardinality of a set. About De Moiver's Theorem to solve numerical problems. About the solution sets of linear system of equations using Matrix method and Crammer's rule which have different applications in physics.
Π	MAT-HC- 2016	Real Analysis	 Students are introduced to the concept of Real Analysis Understand many properties of real line R, including Completeness and Archimedean properties. Learn to define sequences in terms of functions from N to a subset of R. Learn about bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior and the limit of a bounded sequence. Learn about the ratio, root, alternating series and limit Comparison tests for convergence and absolute convergence of an infinite series of real numbers.
	MAT-HC- 2026	Differential Equations	 Learn basics of Differential Equations Formulate differential equations for various mathematical models. Solve differential equations and apply the study of exponential decay model, exponential growth of population, drug assimilation into blood
Ш	MAT-HC- 3016	Theory of Real Functions	 Learn about Continuity and Uniform Continuity of functions defined on intervals, purely on mathematical point of view. Learn extensively about the concept of differentiability using limits, particularly L-Hospital rule help to better handle for difficult differentiation. Know about applications of mean Mean Value Theorem and Taylor's theorem.
	MAT-HC- 3026	Group Theory-I	 Link the fundamental concepts of groups and symmetrical figures Learn about the significance of the notion of Cosets, normal subgroups and factor groups Learn about Lagrange's Theorem, Fermat's Little theorem, Group

			Homomorphism and Group Isomorphism
	MAT-HC-	Analytical	Learn about the study of basic geometric
	3036	Geometry	structures such as parabola, hyperbola,
		5	Conic and their 3 dimensional
			analogues.
IV	MAT-HC-	Multivariate	The course enable students to:
	4016	Calculus	Know about the extension of one
			dimensional calculus to two and higher
			dimensions(i.e. from one variable to
			multivariable discussion)
			Understand the maximization and
			minimization of multivariable functions
			subject to the given constraints
			Learn about inter-relationship amongst
			the line integral, double and triple
			integral formulations
			➢ Familiarize with Green's, Stoke's, and
			Gauss Divergence Theorem and know
			about their applications to several
			problems in Complex Analysis and
			Partial Differential Equations.
	MAT-HC-	Numerical Methods	Learn some numerical methods to find
	4026		the zeros of nonlinear functions of a
			single variable and solution of a system
			of linear equations, up to a certain given
			level of precision
			Know about methods to solve system of
			linear equations, such as False Position
			Method, Fixed Point Iteration Method,
			Newton's Method, Secant Method and L
			U Decomposition method
			Know about the Interpolation techniques
			to compute the values for a tabulated
			function at points not in the table.
			Know about the applications of
			Numerical Differentiation and
			Integration to convert differential
			equations into difference equations for
			numerical solutions
	MAT-HC-	Ring Theory	On completion of this course students will be
	4036		able to:
			Learn about the fundamental concepts of
			Rings, Integral Domains and Fields
			Know about ring homomorphism and
			Isomorphism theorems of ring
			 Learn about the polynomial rings over
			Commutative rings, integral domains,
			Euclidean domains and Unique
N7			Factorization domain(UFD)
V	MAT-HC 5016	Complex Analysis	Completion of the Course will enable the
			students to:
			Learn the significance of differentiability of Complex functions los ding to the
			of Complex functions leading to the
			understanding of Cauchy-Riemann

		equations
		 Learn some elementary functions and
		basic concepts to evaluate the Contour
		integrals
		 Learn Cauchy-Goursat theorem and
		Cauchy's Integral Formula and their
		applications
		Learn to expand some simple functions
		in Taylor and Laurent series, classify the
		nature of singularities and to find
		regidues
MAT HC 5026	Timeren Alashua	The course will each to students to:
MAT-IC 3020	Linear Aigeora	The course will enable students to:
		Learn about the concept of linear
		independence of vectors over affeld, and
		the dimension of a vector space
		 Basic concepts of linear transformations,
		dimension theorem, matrix
		representation of linear transformation
		and the change of coordinate matrix
		 Compute the characteristic polynomial,
		eigenvalues, eigenvectors, and Eigen
		spaces as well as well as the geometric
		and algebraic multiplicities of an
		eigenvalue and apply the basic
		diagonalization result
		Compute inner product and determine
		orthogonality on vector spaces, including
		Gram-Schmidt orthogonalization to
		obtain orthogonal basis
		> Determine the adjoint, normal, unitary
		and orthogonal operators.
MAT-HE-5016	Number Theory	The course will enable students to:
		Learn some properties of prime numbers.
		and some of the open problems in
		number theory Viz Goldbach
		Conjecture linear congruences Fermat's
		Little theorem etc.
		Know about number theoretic functions
		and modular arithmetic
		Solve linear avadratic and system of
		Solve linear, quadratic and system of
 MAT HE 5066	Drogramming in C	The course will enable students to:
WIAT-HE 3000	Frogramming in C	The course will enable students to:
		Onderstand and apply the programming
		concepts of C which is important to
		mathematical investigation and problem
		solving.
		Learn about structured dada-types in C
		and learn about applications in
		tactorization of an integer
		Use of containers and templates in
		Various applications in algebra
		Rpresent the outputs of programs
		visually in terms of well formatted text
		and plots

VI	MAT-HC-	Riemann	The course will enable students to:
	6016	Integration and	 Learn about some of the classes and
	0010	Metric Spaces	properties of Riemann integrable
		spaces	functions and the applications of the
			fundamental theorems of integration
			Know about improper integrals
			including bets and samma functions
			Including beta and gamma functions
			Learn about various natural and abstract
			formulations of distance on the sets of
			usual or unusual entities. Become aware
			on such formulations leading to metric
			spaces
			Know about Banach Fixed Point
			theorem, whose far-reaching
			consequences have resulted into an
			independent branch of study in analysis,
			known as fixed point theory
			Learn about the two important
			topological properties, namely
			connectedness and compactness of
			metric spaces
	MAT-HC-	Partial Differential	The course will enable students to:
	6026	Equations	Formulate, Classify and transform first
		_	order PDE's into Canonical form
			Learn about method of characteristic and
			separation of variables to solve first
			order PDE's
			Classify and solve second order linear
			PDE's
			Learn about Cauchy problem for second
			order PDE and homogeneous as well as
			nonhomogeneous wave equations
			Apply the method of separation of
			variables for solving second order PDEs
	MAT-HE-6066	Group Theory-II	The course will enable students to:
			Learn about automorphism for
			constructing new groups from the given
			group
			Learn about the fact that external direct
			product applies to data security and
			electric circuits
			Understand Fundamental theorem of
			finite abelian group
			\blacktriangleright Be familiar with group actions and
			conjugacy in S_n
			\blacktriangleright Understand Sylow's theorem and their
			applications in checking non-simplicity.
	MAT-HE-6086	Project Work	This paper focuses in imparting practical
			knowledge to students in researches. Project
			work is given to students as a Special course
			involving application of knowledge in solving
			analysing and exploring difficult problems.

Regular Course

Semester	Course Code	Course Name	Course Outcome
Ι	MAT-RC-1016	Calculus	The Course enable the students to:
			• Learn about graphs of functions such as
			polynomial, trigonometric, inverse
			trigonometric functions, Exponential
			functions, etc.
			 Learn about limit and continuity test for functions
			• Learn about differentiability
			• Learn about partial differentiation of
			functions
	MAT-RC-2016	Algebra	The Course enable the students to:
			• Learn about Theory of equations, expansion
			of functions and De Moivre's Theorem & it's
			applications
			• Learn about matrices, determinant and it's
			applications in solving system of equations
			• Learn about group, ring and algebra of vector
			spaces and their applications
	MAT-RC-3016	Differential	The Course enable the students to:
		Equations	• Learn about basics of differential equations
			• Formulate differential equations
			• Learn various method for solving differential
			equations
	MAT-RC-4016	Real Analysis	The Course enable the students to:
			• Learn about bounded, convergent, divergent,
			Cauchy and monotonic sequences and to
			calculate their limit and uniform continuity of
			Information and alternating series and
			• Learn about ratio, root, alternating series and limit comparison tests for convergence and
			absolute convergent of an infinite series of
			real numbers
	MAT-RE-5016	Number	The Course enable the students to:
		Theory	Learn about properties of prime numbers
		2	 Learn about some of the open problems in
			number theory, viz. Goldbach conjecture etc.
			• Learn about the number theoretic functions
			and some properties of Euler's phi-function
	MAT-RE-5026	Discrete	The Course enable the students to:
		Mathematics	• Learn about the notion of ordered sets and
			maps between ordered sets
			• Become familiar with Boolean algrbra,
			Boolean homomorphism, switching circuits
			and their applications
	MAT-RE-6016	Numerical	The Course enable the students to:
		Analysis	• Learn some numerical methods to find the
			zeros of nonlinear functions of a single
			variable and solution of a system of linear
			equations
	1		 Learn about iterative and non-iterative

Kusumbar Baishya HoD, Mathematics S.B.M.S.College, Sualkuchi

S.B.M.S.College,Sualkuchi