Total No. of printed pages = 7 3 (Sem 6) PHY M 2

2015

PHYSICS

(Major)

Theory Paper : M-6.2

Full Marks - 60

Time – Three hours

The figures in the margin indicate full marks for the questions.

GROUP - A

(Mathematical Methods)

- 1. Answer any *two* from the following : $1 \times 2=2$
 - (a) Evaluate the following sum,

$$\sum_{j=1,2,3} \delta_j^l A^j$$

(b) Give two physical examples of a second rank tensor.

[Turn over

(c) Show that

$$\left(\delta_{m}^{i} \ \delta_{p}^{k} + \delta_{p}^{i} \ \delta_{m}^{k}\right) w_{ik} = w_{mp} + w_{pm}$$

- 2. Answer any *four* from the following : $2 \times 4 = 8$
 - (a) Show that $\delta_i^j U^i V^j$ behaves like dot product of $\vec{U} = U^1 \hat{i} + U^2 \hat{j} + U^3 \hat{k}$ and
 - $\vec{V} = V^1 \hat{i} + V^2 \hat{j} + V^3 \hat{k} .$
 - (b) If $T_{mn}^{ij} = A^{ij} B_{mn}$ is a mixed tensor of rank 4 constructed by outer product of A^{ij} and B_{mn} construct a tensor of rank O by the process of contraction.
 - (c) g_j is a symmetric covariant tensor in 3dimention (i, j=1,2,3). Expressing it in a matrix form, show that it has 6 independent components.
 - (d) If $x = x^{i}$, $y = x^{2}$, $z = x^{3}$, show that $\sum_{i,j=1,2,3} \frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}} \delta^{i}_{j} = \nabla^{2} \phi$
- (e) What is the rank of the quantity A^{ijkl} B_{ijkp}?
 What do you mean by an invariant ?

49/3 (Sem 6) PHY M2

- 3. Answer any one of the following : $5 \times 1=5$
 - (a) If Aⁱ and B_i are two contravariant and covariant tensors respectively, show that Aⁱ B_i is invariant under coordinate transformation $x^i \rightarrow x'^i$.
 - (b) If $A^i + B^i = 0$ in a coordinate system x^i , show that $A'^i + B'^j = 0$ after a coordinate transformation, $x^i \rightarrow {x'}^i$.

(c) If $\frac{\partial x^p}{\partial x^q} = \delta_q^p$ and A_j is a covariant tensor of rank 1, show that

 $C^{i} = B^{ij}A_{j}$ transforms like a contravarient tensor of rank 1 under coordinate transformation $x^{i} \rightarrow x'^{i}$. Here B^{ij} is an arbitrary contravariant tensor of rank 2.

GROUP – B

(Solid State Physics)

1. Choose the correct answer from the following :

(3)

1×7=7

- (a) All crystals must possess
 - (A) Translational symmetry

49/3 (Sem 6) PHY M2

[Turn over

- (B) Rotational symmetry
- (C) Reflection symmetry
- (D) Inversion symmetry
- (b) Madelung constant relates to the strength of bonding energy in
 - (A) Van der Waals solids
 - (B) Hydrogen bonded solids
 - (C) Ionic solids
 - (D) Covalent solids
- (c) Root cause of presence of energy bands in solids is
 - (A) bonding in solids
 - (B) periodicity of atoms / molecules
 - (C) presence of free electrons
 - (D) presence of ion cores
- (d) In intrinsic semiconductors
 - (A) number of electrons is much larger than the number of holes
 - (B) number of holes is much larger than the number of holes
 - (C) These numbers are nearly equal
 - (D) These numbers are exactly equal
- 49/3 (Sem 6) PHY M2 (4)

[Turn over

- (e) Meissner effect ensures that a superconductor is
 - (A) a perfect conductor
 - (B) a perfect diamagnet
 - (C) a perfect insulator
 - (D) a perfect paramagnet
- (f) The type of magnetism that is present in all materials is
 - (A) diamagnetism
 - (B) paramagnetism
 - (C) ferromagnetism
 - (D) ferrimagnetism
- (g) Susceptibility of a ferromagnatic material is
 - (A) small positive quantity
 - (B) small negative quantity
 - (C) very large positive quantity
 - (D) nearly zoro.
- 2. Give very short answers to the following questions : 2×4=8
 - (a) Differentiate amorphous and crystalline solids giving examples.
- 49/3 (Sem 6) PHY M2 (5)

- (b) What do you understand by cohesive energy of ionic crystals ?
- (c) What are type-II superconductors ?
- (d) Draw hysteresis loop for ferromagnetic material and label different parts.
- 3. Give short answers to any *two* of the following questions : $5 \times 2=10$
 - (a) Calculate the glancing angle on the cube surface of a rock salt crystal with $a = 2.814A^{\circ}$ corresponding to second order diffraction of 0.710 A° wavelength X-ray.
 - (b) Illustrate briefly the Sommerfeld free electron model for metals.
 - (c) Differentiate metal, insulator and semiconductor in terms of their electrical conductivity and its temperature dependence.
 - (d) What is Larmor frequency ? Calculate the Larmor frequency for the orbital momentum of the electron in a magnetic field $B=1w/m^2$.

- 4. Answer any *two* questions from the following : $10 \times 2=20$
 - (a) What is a Bravais lattice ? What are different Bravais lattices in three dimension ? Explain with suitable example that no other Bravais lattices apart from those listed will be possible. 2+6+2=10
 - (b) Write an essay on bonding in solids. 10
 - (c) Obtain expressions for electrical and thermal conductivity of metals and thence derive Wiedemann-Franz relatio.
 4+4+2=10
 - (d) What are ferromagnetic materials ? Illustrate in detail about Weiss molecular theory of ferromagnetism. 2+8=10

(7)

3500