Total No. of printed pages $=6$
3 (Sem 6) PHY M1

2015

PHYSICS

(Major)
Theory Paper : M-6.1
Full Marks - 60
Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Give short answers to the following questions:

$$
1 \times 7=7
$$

(a) Mention a reason why beta rays are more penetrating than alpha rays.
(b) In the reaction ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{4}$
the total numbers of protons and neutrons are conserved. Then how does the reaction produce energy?
(c) Pick out the nucleus which obeys Fermi Dirac Statistics from the group : ${ }_{2} \mathrm{He}^{4},{ }_{3} \mathrm{Li}^{7}$ and ${ }_{8} \mathrm{O}^{16}$.
(d) It is seen that the mass m of a nucleus varies with its charge number z according to a relation :

$$
m=a+b+c z+(d-e) z^{2}
$$

Show the shape of the graph that would be obtained between z and m .
(e) The packing fraction of ${ }_{3} \mathrm{Li}^{7}$ is $\frac{2}{875}$. What is the mass of the nucleus in atomic mass unit?
(f) Why high vacuum is essential inside a particle accelerator?
(g) How is an anti-neutrino different from a neutrino, considering that both are chargeless and almost massless ?
2. Briefly answer the following: $2 \times 4=8$
(a) What peculiarity in binding energy per nucleon is seen in case of light nuclei with mass number $A=4 n$, where $n=1,2,3, \ldots \ldots$? How do you explain the peculiarity?
(b) A negative muon enters matter. It is seen that X-rays come out from the matter. How?
(c) The variation of the number of cosmic ray particles (\mathbb{N}) per unit area per unit time, with atmospheric depth (d) - measured from the top of the atmosphere - for three different type of particles is shown in the figure. Which one is the graph for muons ? Give reason in support of your answer

(d) Nuclear forces saturate. How is it evident from the binding energy curve ?
3. Answer any three of the following : $5 \times 3=15$
(a) Distinguish between primary and secondary cosmic rays.
(b) It is intended to break a carbon -12 nucleus so that each neutron and proton come out of the nucleus. If the masses are ${ }_{6} \mathrm{C}^{12}=12.000$ $\mathrm{amu},{ }_{1} \mathrm{H}^{\mathrm{l}}=1.007825 \mathrm{amu},{ }_{0}{ }^{1}=1.008665 \mathrm{amu}$, then find the amount of energy needed for the purpose.
(c) A source emits 6 MeV alpha-particles; and it has an activity of 10^{6} disintegrations per second. The alpha-particles pass through the gas in a detector. If the energy needed to produce an ion-pair is 30 eV , find the current produced in the detector.
(d) Explain the construction and the working principle of a cyclotron with the help of a diagram.
(e) A city needs 60.23 MW power, which is provided entirely by a nuclear reactor using U-235 as fuel. The efficiency of the reactor is 86.4%. If fission of each U-235 nucleus produces 200 MeV of energy, find the mass of U-235 needed per day. Avogadro's number $=6.023 \times 10^{23}$ per gm mole.
4. Answer (a) or (b), and any two from (c), (d) and (e) :
$10 \times 3=30$
(a) Give a brief account of Yukawa's meson theory. Neutron and proton are themselves not composed of mesons ; then how do they emit these particles inside the nucleus ? Draw the plot of Yukawa potential. How are these Yukawa particles connected with cosmic rays ?
$3+2+3+2=10$
(b) Derive Bethe-Weizsaecker semi-empirical mass formula and explain the terms involved. Plot the variation of binding energy per nucleon as a function of mass number of nuclei. Show that the curve can explain why fusion is possible for light nuclei.

$$
5+2+3=10
$$

(c) A nucleus X at rest undergoes alpha-decay according to

$$
{ }_{92} \mathrm{X}^{\mathrm{A}} \rightarrow{ }_{\mathrm{Z}} \mathrm{Y}^{228}+\alpha
$$

The emitted alpha-particle enters normally into a uniform magnetic field of 2.002 T and moves in a circle of radius 0.1 m . If $m_{\alpha}=4.008 u$ and $m_{y}=228.04 u$ then find the energy released (in MeV) in the above reaction. Take $1 u=1.6 \times 10^{-27} \mathrm{~kg}$ and $4.008 / 228.04=0.018$.

10
(d) Show that β^{-}decay is possible if the mass of the parent nucleus is greater than that of the daughter nucleus; and β^{+}decay is possible if the parent-daughter mass difference is at least equal to twice the electronic mass.

In the β^{-}decay of ${ }_{5} \mathrm{~B}^{12}$ it is seen that ${ }_{6} \mathrm{C}^{12}$ is formed. If ${ }_{6}{ }^{12}$ remains at rest while the β^{-} particle and the anti-neutrino share the energy
in the ratio $3: 1$, find the energy carried by the anti-neutrino. Take rest masses of ${ }_{5} \mathrm{~B}^{12}$, ${ }_{6} \mathrm{C}^{12}$ and electron as $12.014 \mathrm{u}, 12.000 \mathrm{u}$ and 0.51 MeV respectively. $3+3+4=10$
(e) Write short notes on any two of the following : $5 \times 2=10$
(i) Origin of cosmic rays
(ii) Alpha decay and tunnel effect
(iii) Thermonuclear reaction
(iv) Ionization chamber.

