3 (Sem-6) PHY M 4

2014

PHYSICS

(Major)
Paper : 6.4
Full Marks : 60
Time : 3 hours
The figures in the margin indicate full marks for the questions

> Write the answers to the two Groups in separate books

Group-A

(Statistical Mechanics |

(Marks : 30)

1. Answer the following questions :
(a) How many dimensions of the phase space are required to describe a system of N particles?
(b) Write down the expression for the ensemble average of a physical quantity.
(c) What type of wave functions is required to describe a system of bosons?
(d) What are the occupation numbers of a quantum state for fermions?
2. Answer the following questions :
(a) State the postulate of equal a priori probability.
(b) Write the Boltzmann relation which connects statistical mechanics with thermodynamics. Hence find the entropy of a system at the absolute zero temperature.
(c) The relative probability of finding a system in the energy states E_{1} and E_{2} is e^{2}. If $E_{2}-E_{1}=4.83 \times 10^{-21} \mathrm{~J}$, calculate the temperature of the system.
3. Answer any two of the following questions :
(a) Establish Liouville's theorem and give its physical interpretation.

$$
4+1=5
$$

(b) Calculate the probability of finding two particles together in any one of three different quantum states if they are
(i) classical particles, (ii) bosons and (iii) fermions. $2+2+1=5$

(3)

(c) Describe the phenomenon of BoseEinstein condensation. Give one physical example of this phenomenon.

$$
4+1=5
$$

4. Answer any one of the following questions :
(a) Deduce the Maxwell-Boltzmann energy distribution law

$$
n(u) d u=\frac{2 \pi N}{(\pi k T)^{3 / 2}} u^{1 / 2} e^{-u / k T} d u
$$

Represent this distribution graphically.

$$
9+1=10
$$

(b) What is the Fermi energy? Find an expression for the Fermi energy using Fermi-Dirac statistics.
Calculate the Fermi energy in copper provided number density of free electrons is 8.5×10^{28} electrons $/ \mathrm{m}^{3}$.
$2+6+2=10$
GROUP-B

(Computer Applications)

(Marks : 30)
5. Answer the following :
$1 \times 4=4$
(a) Write down the input and output statements used in either FORTRAN-95 or C or C^{++}.
(b) Write down the FORTRAN-95 or C or C^{++}expression for the algebraic expression $a=x+\frac{y}{z}-r^{2}+c^{3}$.
(c) How the following mathematical functions are invoked in FORTRAN-95 or C or C^{++}?
(i) Absolute value of x
(ii) y to the power z
(d) What is nested loop?
6. Answer the following :
$2 \times 3=6$
(a) Briefly explain a statement use to implement looping in either FORTRAN-95 or C or C^{++}.
(b) What is an array? Write down the syntax for declaration of a onedimensional array in either FORTRAN-95 or C or C^{++}.
(c) Write down the FORTRAN-95 or C or C^{++}comparison operator corresponding to mathematical sysmbols (i) $=$, (ii) \neq, (iii) \geq and (iv) \leq.
7. Answer either (a) or (b) :
(a) Write down the flowchart and a program in either FORTRAN-95 or C or C^{++}to find the sum of the following series :

$$
1+3+5+\ldots+25
$$

(b) Write down the algorithm and a program in either FORTRAN-95 or C or C^{++}to generate first fifteen numbers of the series

$$
0,1,1,2,3,5,8, \ldots
$$

8. Answer either (a) or (b) :
(a) Prepare a program in either FORTRAN-95 or C or C^{++}to compute the real as well as imaginary roots of the quadratic equation $a x^{2}+b x+c=0$.
(b) Write down the flowchart and a program to compute the approximate value of the real root of the following equation :

$$
x^{7}-2 x^{4}+x-8=0
$$

9. Answer either (a) or (b) :
(a) Write down the necessary relation to compute the numerical solution of a first-order differential equation using Runge-Kutta fourth order method.
$14 A-1000 / 1324$
(Turn Over)

16)

Develop an algorithm and write a program in either FORTRAN-95 or C or C^{++}to compute the numerical solution of the equation

$$
\frac{d y}{d x}=\frac{1}{2}(1+x) y^{2}
$$

in the interval $[0,1]$ having initial value $y=1$ at $x=0$ and step size $h=0.1$ using Runge-Kutta fourth order method.
(b) Give the mathematical relations used to compute numerical value of an integral using Simpson's one-third rule. Write the flowchart and a program in either FORTRAN-95 or C or C^{++}to compute the numerical value of the integral

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}
$$

using Simpson's one-third rule.

