2014

PHYSICS

(Major)

Paper: 6.2

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Methods)

- **1.** Answer any *two* from the following: $1 \times 2 = 2$
 - (a) Evaluate the following quantity in 4-dimension:

$$\sum_{i, j} \delta^i_j$$

- (b) Define a scalar quantity.
- (c) Name any two branches of physics where tensors are applied.

2. Answer any *four* from the following :

 $2 \times 4 = 8$

- (a) Define transformation properties of a contravariant vector A^i and a covariant vector B_i .
- (b) What do you mean by contraction of a mixed tensor? Contract A_{klm}^{ij} twice.
- (c) Define inner product of two tensors. If R_{ij} and g^{ij} are two tensors, what is the rank of the quantity $g^{ij}R_{ij}$?
- (d) Define coordinate transformation in N-dimensional space. If N is the dimension of space and r is the rank of a tensor, what is the number of components of the tensor?
- (e) What is the rank of the quantity A^iB_j ?

 If A_{ij} is a symmetric covariant tensor, which of the following is correct?
 - (i) $A_{ij} + A_{ji} = 0$
 - (ii) $A_{ij} + A_{ji} = 2A_{ij}$
 - (iii) $A_{ij} A_{ii} \neq 0$
 - (iv) None of the above

3. Answer any one of the following:

5

- (a) If $A^{ij} = p^i q^j$, obtain the transformation of A^{ij} if the coordinates are transformed from x^i to x'^i .
- (b) If \overrightarrow{A} and \overrightarrow{B} are two ordinary vectors, then show that components of $\overrightarrow{A} \times \overrightarrow{B}$ form a second rank antisymmetric tensor.
- (c) Show that the components of Kronecker delta δ^i_j do not change under coordinate transformation.

GROUP-B

(Solid-state Physics)

4. Choose the correct answer:

 $1 \times 7 = 7$

- (a) Number of atom(s) per unit cell of an f.c.c. lattice is
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) 4

- Bonding between the atoms of silicon crystal is
 - (i) ionic
 - (ii) metallic
 - (iii) covalent
 - (iv) van der Waals
- Relation between electrical and thermal conductivity of metals is given by
 - (i) Wiedemann-Franz law
 - (ii) Boltzmann law
 - (iii) Mathiessen rule
 - (iv) Poisson's law
- Silicon can be made p-type semiconductor by doping with
 - (i) phosphorous
 - (ii) arsenic
 - (iii) aluminium
 - (iv) antimony
- The phenomena of expulsion of magnetic lines of force from the interior of a superconductor is known as
 - (i) Meissner effect
 - (ii) Josephson effect
 - (iii) Hall effect
 - (iv) Thompson effect

- Hysteresis is shown in
 - (i) nonmagnetic material
 - (ii) diamagnetic material
 - (iii) paramagnetic material
 - (iv) ferromagnetic material
- Susceptibility of a diamagnetic material
 - (i) large and negative
 - (ii) large and positive
 - (iii) small and negative
 - (iv) small and positive
- 5. Give very short answers to the following questions: $2 \times 4 = 8$
 - (a) What are nonprimitive unit cells?
 - Differentiate between van der Waals and hydrogen bonding.
 - Distinguish between intrinsic extrinsic semiconductors from energy band diagram.
 - (d) What are ferromagnetic domains?

(7)

- **6.** Give short answers to the following questions (any *two*): $5\times 2=10$
 - (a) Show that the first five terms in the series for Madelung constant of NaCl are

$$\alpha = 6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{2} + \frac{24}{\sqrt{5}}$$

- (b) Discuss about the position of Fermi level in intrinsic and extrinsic semi-conductors under suitable limiting conditions
- (c) Give an account of the experimental results which distinguish the superconducting state from the normal state of a metal.
- (d) An electromagnet with iron core achieves maximum magnetic field of 1.0 tesla. Obtain the magnetic interaction energy at a temperature of 300 K.
- 7. Answer any *two* essay-type questions from the following: $10 \times 2 = 20$
 - (a) Explain why X-rays can get diffracted from solids. Illustrate quantitatively how Bragg's law can be used for determination of lattice constants.

 3+7=10

(b)	Write	down	Boltzmann			1	transport	
	equation	electror	under extern			mal		
	electric	field.	Solve	it	to	ol	otain	an
	expression for electrical conductivity is						in in	

- (c) Discuss the essential features of the electron energy band structure of solids on the basis of Kronig-Penny model. 10
- (d) Illustrate in detail about type-I and type-II superconductors.
- (e) Obtain an expression for paramagnetic susceptibility of free electrons on the basis of classical laws. Discuss its drawbacks and show how Pauli modified it. 6+2+2=10

10