Total No. of printed pages $=6$
3 (Sem 4) PHY M1

2015

PHYSICS

(Major)
Theory Paper : M-4.1
Full Marks - 60
Time - $21 / 2$ hours
The figures in the margin indicate full marks for the questions.

GROUP-A

1. Answer any four of the following questions:
(a) Define ordinary point of a second order differential equation.
(b) What is the value of $P_{n}(t)$?
(c) Define total probability.
(d) Under what condition does the Gaussian distribution become normal distribution?
(e) Give an example where Legendre polynomial is used in Physics.
(f) What is meant by mean deviation ?
2. Answer any three of the following questions :

$$
2 \times 3=6
$$

(a) Check whether Frobenius method can be applied to the following equation or not.

$$
\frac{d^{2} y}{d x^{2}}-\frac{9 y}{x^{3}}=0
$$

(b) Prove that $\mathrm{P}_{\mathrm{n}}^{\mathrm{m}}(-\mathrm{x})=(-1)^{\mathrm{n}+\mathrm{m}} \mathrm{P}_{\mathrm{n}}^{\mathrm{m}}(\mathrm{x})$.
(c) What is the probability that the ace of spaces will be drawn from a deck of cards at least once in 104 consecutive trials?
(d) Prove the following recurrence relation : $2 \mathrm{xH}_{\mathrm{n}}(\mathrm{x})=2 \mathrm{nH}_{\mathrm{n}-1}(\mathrm{x})+\mathrm{H}_{\mathrm{n}+1}(\mathrm{x})$.
(e) Find the degree and order of the following equation :

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2 / 3}=\left(y+\frac{d y}{d x}\right)^{1 / 2}
$$

3. Answer any two of the following questions :
$5 \times 2=10$
(a) Establish the following recurrence formula for Legendre polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$
$n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x) . \quad 5$
(b) Find the singularity of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}+x y^{\prime}+y=0$ and discuss the nature of the singularity.
(c) Find the probability of almost 5 defective fuses to be found in a box of 200 fuses, if experience shows that 2% of such fuses are defective.
(d) Show that $\int_{-1}^{+1} x P_{n}(x) P_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1} \cdot 5$
4. Answer any two of the following: $10 \times 2=20$
(a) (i) Using the following definition of the Legendre polynomials $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$,

$$
\left(1-2 x t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty} t^{n} P_{n}(x)
$$

show that $\left|\mathrm{P}_{\mathrm{n}} \cos (\theta)\right| \leq 1$
(ii) Prove the recurrence relation $\mathrm{xP}_{\mathrm{n}}^{\prime}-\mathrm{P}_{\mathrm{n}-1}^{\prime}=n \mathrm{P}_{\mathrm{n}}^{\prime}$
(b) (i) Find the indicial equation of the Hermite equation $\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 x y=0$.
(ii) Show that the generating function for Hermite polynomial $\mathrm{H}_{\mathrm{n}}(\mathrm{x})$, for integral n , and real values of n is given by
$e^{2 x t-t^{2}}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(x)$.
(c) (i) What is Gaussian distribution?2
(ii) Define standard deviation.
(iii) Prove the theory of compound probability.
(iv) Write one property of normal distribution.
(d) (i) Show that $\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=0$ where $P_{n}(x)$ and $P_{m}(x)$ are solutions of the Legendre differential equation. 6
(ii) Show that

$$
\begin{aligned}
& H_{0}(x)=1 \text { and } H_{1}(x)=2 x . \quad 2+2=4 \\
& \text { GROUP - B }
\end{aligned}
$$

5. Answer any two of the following : $1 \times 2=2$
(a) What is the function of control unit?
(b) Give the logical AND operation.
(c) What is a string ?
6. Answer any two of the following : $2 \times 2=4$
(a) Define with example an operating system.
(b) What are control statements? Give examples.
(c) Write a syntax in C/FORTRAN. How is an array declared in a program ?
[Turn over
7. Answer any one of the following :
(a) Write a program in FORTRAN / $\mathrm{C} / \mathrm{C}^{++}$to find the sum of first n natural numbers.
(b) Draw a flow chart to find the factorial of a number.
8. Answer any one of the following questions :

$$
10 \times 1=10
$$

(a) Describe with a block diagram for the different functional units of a digital computer. 10
(b) Write the algorithm and draw the flow chart to find the largest of N numbers. $\quad 5+5=10$

