3 (Sem-3) PHY M 1

2014

PHYSICS

(Major)
Paper : 3.1
Full Marks : 60
Time : $2^{1 / 2}$ hours
The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Physics)

(Marks:25)

1. Answer the following questions :
(a) Define self-adjoint matrix.
(b) Show that trace of the sum of two matrices is the sum of their traces.
(c) Find the conjugate transpose of the following matrix :

$$
A=\left(\begin{array}{cc}
2+3 i & -1+2 i \\
i & 5-6 i
\end{array}\right)
$$

12)

2. Show that the matrix A given by

$$
A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1+i \\
1-i & -1
\end{array}\right]
$$

is unitary.
3. Answer any two of the following questions :
(a) (i) If A and B are two Hermitian matrices, then prove that $A B$ is Hermitian only if A and B commute.
(ii) Solve the following system of equations by the use of matrix method :

$$
\begin{array}{r}
x+3 y=4 \\
2 x-2 y=6
\end{array}
$$

(iii) If

$$
A=\left(\begin{array}{rrr}
1 & 2 & -2 \\
4 & 1 & 5 \\
-3 & 2 & 4
\end{array}\right)
$$

then find B, when $A^{T}+2 B=3 I$. 2
(b) (i) Show that

$$
A=\left[\begin{array}{rr}
a b & b^{2} \\
-a^{2} & -a b
\end{array}\right]
$$

is a nilpotent matrix of index 2 .
(ii) Prove that the modulus of each eigenvalue of an orthogonal matrix is unity.
(c) A reference frame a rotates with respect to another reference frame b with uniform angular velocity $\vec{\omega}$. If the position, velocity and acceleration of a particle in frame a are represented by R, v_{a} and f_{a} respectively, then show that the acceleration of that particle in frame b is given by f_{b}, where

$$
f_{b}=f_{a}+2 \vec{\omega} \times v_{a}+\vec{\omega} \times(\vec{\omega} \times R)
$$

How will the expression get modified if the frame a rotates with respect to frame b with non-uniform angular velocity $\vec{\omega}$?

$$
4+1=5
$$

4. Answer either $[(a)$ and $(b)]$ or $[(c)$ and $(d)]$:
(a) (i) Verify the theorem

$$
A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I
$$

using

$$
A=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right)
$$

41

(ii) For the Pauli spin matrices
$\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ and $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
show that

$$
\left[\sigma_{1}, \sigma_{2}\right]=2 i \sigma_{3}
$$

(b) (i) Express the matrix

$$
A=\left[\begin{array}{rrr}
2 & 1 & 0 \\
1 & -1 & -2 \\
4 & 2 & 0
\end{array}\right]
$$

as the sum of a symmetric and a skew-symmetric matrix.
(ii) Let the matrix

$$
[A]=\left(\begin{array}{ll}
a & h \\
h & b
\end{array}\right)
$$

is transformed to the diagonal form

$$
[B]=T_{\theta} A T_{\theta}^{-1}
$$

where

$$
T_{\theta}=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Show that

$$
\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 h}{a-b}\right)
$$

(c) (i) What is a special square matrix? 1
(ii) By using the Cayley-Hamilton theorem, compute the inverse of

$$
A=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right)
$$

(d) Diagonalize the following matrix :

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \\
& \text { Group-B } \\
& \text { (Electrostatics) } \\
& \text { (Marks: } 35 \text {) }
\end{aligned}
$$

5. Choose the correct option :
(a) The energy density in an electrostatic field is
(i) $\frac{E^{2}}{2 \varepsilon}$
(ii) $\frac{\varepsilon E^{2}}{2}$
(iii) $\frac{2 \varepsilon}{E^{2}}$
(b) The permittivity of a medium has the unit
(i) $\frac{F}{m}$
(ii) $F \cdot m$
(iii) $\frac{N}{m}$
(c) The electric field \vec{E} and the electric potential ϕ are related by
(i) $\vec{E}=\vec{\nabla} \phi$
(ii) $\vec{E}=-\vec{\nabla} \phi$
(iii) $\phi=\vec{\nabla} \cdot \vec{E}$
(d) The dielectric constant K and the electrical susceptibility χ of a dielectric material are related by
(i) $K=1+\chi$
(ii) $\chi=1+K$
(iii) $K X=1$
6. Answer the following questions :
(a) Check whether the following functions may be possible for electrostatic fields

$$
\vec{E}=\left(2 x \hat{i}-y z^{2} \hat{j}-\hat{k}-y^{2} z \hat{k}\right) A
$$

where A is a constant with suitable dimensions. Using Poisson's equation, find how the charge density changes with position.
Or

Find $\overrightarrow{\mathbb{E}}$ at $(0,0,5) m$ due to $Q_{1}=5 \mu C$ at $(0,3,0) m$ and $Q_{2}=5 \mu C$ at $(3,0,0) m$.
(b) If ρ^{\prime} be the density of polarization charges within the volume of a dielectric slab placed in an electric field, then prove that $\rho^{\prime}=-\vec{\nabla} \cdot \vec{P}$.
7. Using integral form of Gauss law in electrostatics, determine the electric field and potential at a distance r from a straight infinitely long wire having a charge λ per unit length.
$21 / 2+21 / 2=5$

Or
What is electric dipole? Show that the electric field in free space due to a dipole is given by

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0} r^{3}}\left[\frac{3(\vec{p} \cdot \vec{r}) \vec{r}}{r^{2}}-\vec{p}\right]
$$

where \vec{p} is the dipole moment.
8. Answer any two questions :
(a) (i) Find an expression for the torque experienced by an electric dipole in external electric field. Hence show that the work done in rotating the dipole from an initial position θ_{1} to the final position θ_{2} is

$$
W=-p E\left(\cos \theta_{2}-\cos \theta_{1}\right) \quad 3+2=5
$$

(ii) Find an expression for the potential energy due to the mutual interaction between two dipoles of dipole moments \vec{p}_{1} and \vec{p}_{2} respectively. Two water molecules each having a dipole moment 6.2×10^{-30} coulomb-metre point in the same direction and are inclined
at an angle of 60° to the line joining their centres. Determine the potential energy due to their dipoledipole interactions when their centres are 3.1×10^{-10} metre apart.

$$
3+2=5
$$

(b) (i) A uniformly charged sphere of radius a carries a total charge Q and a volume density of charge ρ. Show that the electrostatic energy is

$$
U=\frac{3 Q^{2}}{20 \pi \varepsilon_{0} a}
$$

(ii) State and prove uniqueness theorem.
(iii) Show that the potential inside a spherical capacitor is given by

$$
V=4 \pi \varepsilon_{0}\left(\frac{a b}{b-a}\right)
$$

where a and b are the radii of the inner and outer concentric spheres respectively.
(c) (i) Write Poisson's equation. Solve Laplace's equation to find the potential at a distance \vec{r} from the axis of an infinitely long conducting cylinder of radius a_{0} charged with a surface density σ. Take the potential of the cylinder to be zero.

$$
1+4=5
$$

(10)

(ii) Calculate with the method of electrical image the potential and the field at any point in space when a point charge is placed in front of a conducting plane of infinite extent maintained at zero potential.
(d) (i) Define electrical susceptibility.
(ii) An isotropic dielectric is placed in an otherwise uniform electrostatic field \vec{E}. Show that field inside a spherical cavity in this direction is

$$
\vec{E}_{i}=\vec{E}+\frac{\vec{P}}{3 \varepsilon_{0}}
$$

where \vec{P} is the polarization.
(iii) Establish the Clausius-Mosotti equation

$$
\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}=\frac{N \alpha}{3 \varepsilon_{0}}
$$

for a linear dielectric material. 5

