Total No. of printed pages $=6$

3 (Sem 2) PHY M1

2015
 PHYSICS
 (Major)

Theory Paper : 2.1
Full Marks - 60
Time - $2 \frac{1}{2}$ hours

The figures in the margin indicate full marks for the questions.

GROUP-A

(Mathematical Methods-II)
Marks - 35

1. Answer the following questions :
$1 \times 5=5$
(a) Evaluate $\int \vec{A} \times \frac{d^{2} \vec{A}}{d t^{2}} d t$
(b) Give a definition of $\iint_{\mathrm{S}}(\overline{\mathrm{A}} \cdot \hat{\mathrm{n}})$ ds over a surface S in terms of limit of a sum.
[Turn over
(c) Describe the co-ordinate surfaces for cylindrical co-ordinates.
(d) Evaluate $\int_{0}^{3} x^{3} \delta(x-2) d x$
(e) Give a physical example which can be described by dirac delta function.
2. Answer the following questions : $2 \times 3=6$.
(a) What are the unit vectors and scale factors in curvilinear co-ordinate system ?
(b) Prove that $x \delta(x)=0$
(c) Evaluate $\left\lceil\left(-\frac{3}{2}\right)\right.$ provided $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
3. Answer either (a) or (b) :

Either

(a) If $\phi=2 x y z^{2}, \vec{F}=x y \hat{i}-z \hat{j}+x^{2} \hat{k}$ and C is the curve $x=t^{2}, y=2 t, z=t^{3}$, from $t=0$ to $\mathrm{t}=1$, evaluate the line integral $\int_{\mathrm{C}} \phi \mathrm{d} \overrightarrow{\mathrm{r}} .3$
(b) Determine the transformation from cylindrical to rectangular co-ordinates. 3

33/3 (Sem 2) PHY M1
4. Answer either (a) or (b) :

Either

(a) Verify Gauss's divergence theorem using the function
$\vec{y}=y^{2} \hat{i}+\left(2 x y+z^{2}\right) \hat{j}+(2 y z) \hat{k}$ and the unit cube situated at the origin.

Or
(b) Prove Green's theorem in the plane if C is a closed curve which has the property that any straight line parallel to the co-ordinate axes cut C in at most two points.
5. Answer either [(a) and (b)] or [(c) and (d)].

Either

(a) Express div $\overrightarrow{\mathrm{A}}$ in orthogonal co-ordinates.
(b) Define Gamma function. Show that $\lceil(1)=1$.

Or

(c) Prove that
$\oint \mathrm{d} \overrightarrow{\mathrm{r}} \times \vec{\beta}=\iint_{S}(\hat{\mathrm{n}} \times \overrightarrow{\mathrm{v}}) \times \vec{\beta} \mathrm{ds}$
where S is the surface bounded by the closed loop and $\hat{\mathrm{n}}$ is the unit normal vector to the plane of ds.

33/3 (Sem 2) PHY M1
[Turn over
(d) Show that
$\delta(k x)=\frac{1}{|k|} \delta(x)$
where k is any (non-zero) constant.
6. Answer either (a) or (b) :

Either

(a) Find a volume clement dv in spherical polar co-ordinates and sketch the element giving the magnitudes of its edges. $\quad 5+3=8$
Or
(b) If the temperature at any point (x, y, z) of a solid at a time t is $u(x, y, z, t)$ and if K, ρ, c are respectively the thermal conductivity, density and specific heat of the solid, assumed constant, show that
$\frac{\partial v}{\partial t}=k \vec{\nabla}^{2} v$, where $k=\frac{K}{\rho c}$
and for steady state heat flow, the equation reduces to Laplace's equation. $\quad 7+1=8$

GROUP - B

(Properties of Matter)

Marks - 25
Question No. 7 is compulsory and answer any two from the rest.
7. Answer the following questions :
(a) (i) Write down the limit of Poisson's ratio of substances.
(ii) State the different type of forces, which act on a downward spherical moving body inside a viscous medium.
(iii) State the nature of angle of contact between mercury and glass. $1 \times 3=3$
(b) A disc of 0.1 m radius and mass 1 kg is suspended in a horizontal plane by a vertical wire attached to its centre. If the diameter of the wire is $1 . \mathrm{mm}$ and its length is 1.5 m and the time period of torsional vibration of the disc is 5 sec , find the rigidity modulus of the wire.
8. (a) Distinguish between wave and ripple. Derive an expression for critical wavelength which determine the condition that a wave becomes ripple.
(b) If a number of little droplets of water, all of the same radius " r " cm , coalesce to form a single drop of radius " R " cm , show that the rise of temperature of water will be given by

$$
d T=\frac{3 S}{J}\left(\frac{1}{r}-\frac{1}{R}\right)
$$

where S is the surface tension of water and J is the mechanical equivalent of that. 3
9. (a) Explain the rotating cylinder method of determining the co-efficient of viscosity of a liquid and give its theory.
(b) Calculate the mass of water flowing in 10 minutes through a tube of 0.1 cm in diameter, 40 cm long, if there is a constant pressure of 20 cm of water. The co-efficient of viscosity of water is 0.0089 c.g.s unit.
10. (a) Find an expression for bending moment of a horizontal beam clamped at one end and loaded at the other.
(b) A light beam of rectangular cross-section is clamped horizontally at one end and a heavy mass is attached at the other end. Find the depression at the loaded end.

