2015

MATHEMATICS

(Major)
Theory Paper : M-6.5
(Graph and Combinatorics)
Full Marks - 60
Time - Three hours
The figures in the margin indicate full marks for the questions.

1. Answer the following questions:
 $1 \times 7=7$

(a) How many functions are there from a set with 3 elements to a set with 5 elements ?
(b) How many ways are there to draw a club or a spade from a pack of cards ?
(c) Draw a simple graph having four vertices each of degree two.
(d) Define the union of two graphs.
(e) Determine if the walk
$\left(v_{2}, e_{2}, v_{3}, e_{3}, v_{1}, e_{4}, v_{3}\right)$ is a path

(f) What is meant by the length of a walk ?
(g) Is the following statement true ? "In any graph, the number of odd vertices is even."
2. Answer the following questions : $2 \times 4=8$
(a) State the rule of sum in the theory of counting.
(b) Find the number of subsets of the set

$$
\{1,2,3,4, \ldots \ldots ., n\} .
$$

(c) Define a complete bipartite graph. Draw a complete bipartite graph on 2 and 4 vertices.
(d) Does there exist a simple graph with five vertices having degrees $2,2,4,4,4$? Justify.
3. Answer any three parts of the following :
$3 \times 5=15$
(a) Give combinational proofs of the following identities :
$2+3=5$
(i) $\mathrm{C}(\mathrm{n}, \mathrm{r})=\mathrm{C}(\mathrm{n}, \mathrm{n}-\mathrm{r})$
(ii) $\mathrm{C}(\mathrm{n}+1, \mathrm{r})=\mathrm{C}(\mathrm{n}, \mathrm{r})+\mathrm{C}(\mathrm{n}, \mathrm{r}-1)$
(b) (i) How many selections can be made from 3 white balls, 4 green balls, 1 red ball, 1 black ball ; if at least one must be chosen ?
(ii) In how many ways can a person invite one or more of his 5 friends to a party? $3+2=5$
(c) (i) Draw the graphs K_{4} and $\mathrm{K}_{2,3}$.
(ii) How many vertices are there in a graph with 15 edges if each vertex is of degree 3 ?
$2+3=5$
43/3 (Sem 6) MTH M5
[Turn over
(d) Define a path.

If a graph G contains exactly two vertices of odd degree, show that there exists a path between these two vertices. $1+4=5$
(e) Define a tree.

If in a graph G, there is a unique path between every pair of vertices, show that G is a tree.

$$
1+4=5
$$

4. (a) How many integral solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=16$ where each $x_{i} \geq 2$?
(b) How many integral solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=30$, where $x_{1} \geq 2, x_{2} \geq 3, x_{3} \geq 4, x_{4} \geq 2, x_{5} \geq 0$?
(c) What is the probability that exactly one cell is empty if ten identical balls are distributed randomly into five distinct cells ?
5. (a) Prove that a connected graph G with n vertices is a tree if and only if G contains ($n-1$) edges.

Or

Prove that a connected graph G remains connected after removing an edge e from G if and only if e is in some cycle in G. 5
(b) Define
(i) a bridge in a graph,
(ii) a separable graph.

$$
1+1=2
$$

(c) Define graph isomorphism. Examine if the following two graphs display an isomorphism between them.
$1+2=3$

6. (a) (i) Define an Eulerian graph and a Hamiltonian graph.
(ii) Give an example of a graph which is Hamiltonian, but not Eulerian.
(iii) Give an example of a graph which is Eulerian but not Hamiltonian.

$$
\begin{equation*}
1+1+1+1=4 \tag{5}
\end{equation*}
$$

[Turn over
(b) If a connected graph G is Eulerian, prove that every vertex of G has even degree. 6

Or

Prove that there is always a Hamiltonian path in a directed complete graph. 6

