Total No. of printed pages $=7$
3(Sem 6) MTH M4

## 2015

## MATHEMATICS

## (Major)

Theory Paper : M-6.4
(Discrete Mathematics)

$$
\begin{aligned}
& \text { Full Marks - } 60 \\
& \text { Time - Three hours }
\end{aligned}
$$

The figures in the margin indicate full marks for the questions.

1. Answer the following questions as directed.

$$
1 \times 7=7
$$

(a) If n is a positive integer such that $\mathrm{n}^{3}+1$ is a prime, then find the value of $n$.
(b) For all integers $\mathrm{n} \geq 0,7^{\mathrm{n}}-1$ is divisible by 6. (State whether true or false).
[Turn over
(c) State Euclid's theorem on prime numbers.
(d) Find all integers $k \geq 2$ such that $7 \equiv k$ (mod $k^{2}$ ).
(e) If n is a positive integer such that gcd $(\mathrm{n}, 9)=1$, then $\mathrm{n}^{18}-1$ is not divisible by 9. (State whether true or false).
(f) State Fermat's Little Theorem.
(g) State the condition for which the linear Diophantine equation $a x+b y=c$ has an integral solution.
2. Answer the following questions :
(a) If $a$ and $b$ are positive integers such that $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$, then show that $\operatorname{gcd}(a+b, a-b)=1$ or 2.
(b) Find the remainder when $\lfloor 17$ is divided by 19.
(c) Show that if $x^{2}+y^{2}=z^{2}$, then one of $x, y$ is $\pm 1(\bmod 4)$ and the other is $0(\bmod 4)$.
(d) Find all integral solution of the following linear Diophantine equation $8 x-10 y=42$.
3. Answer the following questions: $5 \times 3=15$
(a) For any integer $\mathrm{n} \geq 2$, if p divides $\mathrm{a}_{1}, \mathrm{a}_{2} \ldots$ $a_{n}$, then prove that $p$ divides one of the integers $a_{1}, a_{2}, \ldots, a_{n}$, where $p$ is a prime number. Applying this result, show that 12 is not a prime number.

## Or

If $\mathrm{p}_{\mathrm{n}}$ is the nth prime, then prove that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\ldots \ldots .+\frac{1}{p_{n}}$ is not an integer.
(b) Solve the linear congruence

$$
6 x \equiv 15 \quad(\bmod 21)
$$

## Or

Determine the integer in the unit place of $17^{17^{17}}$.
(c) If $\mathrm{p}^{\mathrm{c}} \mathrm{n}, \mathrm{p}^{\mathrm{c+1}} \nmid \mathrm{n}$ where p is a prime of the form $4 \mathrm{k}+3$ and c is odd, then prove that n has no representation as the sum of two squares.
4. (a) Answer either (i) or (ii) : 10
(i) (1) If the integer $n>1$ has the prime factorization
$\mathrm{n}=\mathrm{p}_{1}^{\mathrm{k}_{1}} \mathrm{p}_{2}^{{ }^{k_{2}}} \ldots \ldots . . \mathrm{p}_{\mathrm{r}}^{\mathrm{k}_{\mathrm{r}}}$ then show that-
$\tau(\mathrm{n})=\prod_{\mathrm{i}=1}^{\mathrm{r}}\left(\mathrm{k}_{\mathrm{i}}+1\right)$.
Hence show that $\tau$ is a multiplicative function.
(2) Define Mobius $\mu$ function. Show that $\mu$ is a multiplicative function. If $n$ is a positive integer such that $n \geq 3$, show that
$\sum_{k=1}^{n} \mu(\mid \underline{k})=1$.
(ii) Define Euler's phi-function. Find $\phi(20)$. If p is a prime and n is a positive integer, then prove that
$\phi\left(p^{n}\right)=p^{n}\left(1-\frac{1}{p}\right) . \quad 1+2+7=10$
(b) Answer either (i) or (ii) :
(i) (1) Let p be " 6 is a real number", q be $" 2+4=9$ " and $r$ be "sum of two even integers is even". Then find the truth value of the following statement forms :
(i) $\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r})$
(ii) $(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})$
(iii) $(\mathrm{p} \rightarrow(\sim \mathrm{q} \vee \mathrm{r})) \wedge \sim(\mathrm{q} \vee(\mathrm{p} \leftrightarrow \mathrm{r}))$
(2) State the principle of substitution. Using the principle, show that the following statements formula is a tautology :
$\left(p_{1} \wedge \sim p_{2}\right) \rightarrow\left(\left(\sim p_{3} \wedge p_{4}\right) \rightarrow\right.$ $\left.\left(\left(p_{1} \wedge \sim p_{2}\right) \wedge\left(\sim p_{3} \wedge p_{4}\right)\right)\right) \quad 5$
(ii) (1) Using truth table, verify the following :
$\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r}) \equiv(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{r}) \quad 5$
(2) Write the truth tables for the connectives 'NOR' and 'NAND'. Show that each of the connectives alone forms an adequate system.
(c) Answer either (i) or (ii) :
(i) (1) Express the following Boolean expression in disjunctive normal form (DNF) and conjunctive normal form (CNF) :
$(x+y+z)\left(x y+x^{\prime} z\right)^{\prime}$
(2) Find a switching circuit which realizes the switching function $f$ given by the following switching table :

5

| $x$ | $y$ | $z$ | $f(x, y, z)$ |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |

(ii) (1) Simplify the Boolean expression:

$$
(x+y)(x+z)\left(x^{\prime} y^{\prime}\right)^{\prime}
$$

Express the following Boolean expression in conjunctive normal form (CNF) in the variables present in the expression: $x^{\prime}+y z$.
$2^{1 / 2}+2^{1 / 2}=5$
(2) Consider the following switching circuit :


Find a Boolean expression which represents the circuit. Also, draw a simpler equivalent circuit for the above circuit. $3+2=5$

