Total No. of printed pages = 7

3(Sem 6) MTH M4

2015

MATHEMATICS

(Major)

Theory Paper : M-6.4

(Discrete Mathematics)

Full Marks - 60

Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions as directed. $1 \times 7 = 7$

(a) If n is a positive integer such that $n^{3}+1$ is a prime, then find the value of n.

(b) For all integers n ≥ 0, 7ⁿ - 1 is divisible by
6. (State whether true or false).

Turn over

- (c) State Euclid's theorem on prime numbers.
- (d) Find all integers $k \ge 2$ such that $7 \equiv k \pmod{k^2}$.
- (e) If n is a positive integer such that gcd (n, 9) = 1, then n¹⁸ 1 is not divisible by 9. (State whether true or false).
- (f) State Fermat's Little Theorem.
- (g) State the condition for which the linear Diophantine equation ax + by = c has an integral solution.
- 2. Answer the following questions : $2 \times 4 = 8$
 - (a) If a and b are positive integers such that gcd (a, b) = 1, then show that gcd (a + b, a b) = 1 or 2.
 - (b) Find the remainder when 17 is divided by 19.
 - (c) Show that if $x^2 + y^2 = z^2$, then one of x, y is $\pm 1 \pmod{4}$ and the other is 0 (mod 4).

42/3 (Sem 6) MTH M4

- (d) Find all integral solution of the following linear Diophantine equation 8x 10y = 42.
- 3. Answer the following questions : $5 \times 3 = 15$
 - (a) For any integer n ≥ 2, if p divides a₁, a₂ ... a_n, then prove that p divides one of the integers a₁, a₂, ..., a_n, where p is a prime number. Applying this result, show that 12 is not a prime number.

Or

If p_n is the nth prime, then prove that

 $\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n}$ is not an integer.

(b) Solve the linear congruence

 $6x \equiv 15 \pmod{21}$

Or

Determine the integer in the unit place of $17^{17^{17}}$.

42/3 (Sem 6) MTH M4

(3)

[Turn over

- (c) If $p^{c|n}$, p^{c+1} / n where p is a prime of the form 4k + 3 and c is odd, then prove that n has no representation as the sum of two squares.
- 4. (a) Answer either (i) or (ii): 10
 - (i) (1) If the integer n > 1 has the prime factorization
 - $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ then show that- $\tau(n) = \prod_{i=1}^{r} (k_i + 1).$

Hence show that τ is a multiplicative function.

(2) Define Mobius μ function. Show that μ is a multiplicative function. If n is a positive integer such that $n \ge 3$, show that

> $\sum_{k=1}^{n} \mu(\underline{k}) = 1.$ 3+2=5

(ii) Define Euler's phi-function. Find $\phi(20)$. If p is a prime and n is a positive integer, then prove that

$$\phi(p^n) = p^n \left(1 - \frac{1}{p}\right).$$
 1+2+7=10

42/3 (Sem 6) MTH M4

- (b) Answer either (i) or (ii):
 - 10 (i) (1) Let p be "6 is a real number", g be "2+4 = 9" and r be "sum of two even
 - integers is even". Then find the truth value of the following statement forms : 5

(i)
$$p \rightarrow (q \land r)$$

(ii) $(p \land q) \lor (p \land r)$

- (iii) $(p \rightarrow (\sim q \lor r)) \land \sim (q \lor (p \leftrightarrow r))$
- (2) State the principle of substitution. Using the principle, show that the following statements formula is a tautology:

$$(\mathbf{p}_1 \land \sim \mathbf{p}_2) \rightarrow ((\sim \mathbf{p}_3 \land \mathbf{p}_4) \rightarrow$$

- $((p_1 \land \sim p_2) \land (\sim p_3 \land p_4)))$
- (ii) (1) Using truth table, verify the following :

$$p \rightarrow (q \land r) \equiv (p \rightarrow q) \land (p \rightarrow r)$$
 5

(2) Write the truth tables for the connectives 'NOR' and 'NAND' Show that each of the connectives alone forms an adequate system. 5

(5)

42/3 (Sem 6) MTH M4

[Turn over

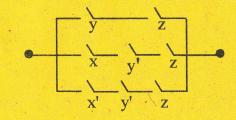
- (c) Answer either (i) or (ii) :
 - (i) (1) Express the following Boolean expression in disjunctive normal form (DNF) and conjunctive normal form (CNF) :

(x + y + z) (xy + x'z)' 5

10

(2) Find a switching circuit which realizes the switching function f given by the following switching table :

x	у	z	f (x, y, z)
1	1	1	0
1	1	0	1
. 1	0	1	1
1	0 ·	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1


(ii) (1) Simplify the Boolean expression :

(x + y) (x + z) (x' y')'

Express the following Boolean expression in conjunctive normal form (CNF) in the variables present in the expression :

x' + yz. $2\frac{1}{2}+2\frac{1}{2}=5$

(2) Consider the following switching circuit :

Find a Boolean expression which represents the circuit. Also, draw a simpler equivalent circuit for the above circuit. 3+2=5

(7)

42/3 (Sem 6) MTH M4

(6)