Total No. of printed pages $=7$

3 (Sem 6) MTH M2

2015

MATHEMATICS

(Major)

Theory Paper : M-6.2

(Numerical Analysis)

Full Marks - 60
Time - Three hours
The figures in the margin indicate full marks for the questions.

1. Answer the following questions: $1 \times 7=7$
(a) Select the correct answer :

If x is the true value of a quantity and x_{1} is its approximate value, then the relative error is
(i) $\left|\frac{x_{1}-x}{x_{1}}\right|$
(ii) $\left|\frac{x-x_{1}}{x}\right|$
(iii) $\left|\frac{\mathrm{x}_{1}}{\mathrm{x}}\right|$
(iv) $\left|\frac{x}{x_{1}-x}\right|$
(b) Fill up the blank:

Approximate value of $\frac{1}{3}$ are given as 0.3 , . 0.33 and 0.34 . Out of these the best approximation is -
(c) Define the term 'Absolute error'.
(d) What is the Kth difference of a polynomial of degree K ?
(e) Write the relationship between the operator E and the differential operator D .
(f) Choose the correct answer :
$\Delta \nabla=$
(i) $\nabla \Delta$
(ii) $\nabla+\Delta$
(iii) $\nabla-\Delta$
(iv) None.
(g) What is the degree of the approximating polynomial corresponding to trapezoidal rule and Simson's $\frac{1}{3}$ rd rule?
2. Answer the following questions: $2 \times 4=8$
(a) Using normalized floating point representation of real numbers,

Subtract 9432 E-4 from 5452 E-3
(b) With the usual notations, show that
$(1+\Delta)(1-\nabla)=1$
(c) How do you choose the 'proper' interpolation formula for numerical differentiation?
(d) $f(x)$ is given by

$x:$	0	0.5	1
$f(x):$	1	0.8	0.5

Using trapezoidal rule find the value of $\int_{0}^{1} f(x) d x$.
3. Answer the following questions:
(a) Round off the number 37.46235 to four significant figures and compute Absolute error and Relative error.
$1+4=5$

40/3 (Sem 6) MTH M2
(3)
[Turn over
(b) (i) Evaluate: $\Delta \tan ^{-1} x$
(ii) Prove that $e^{x}=\left(\frac{\Delta^{2}}{E}\right) e^{x} \cdot \frac{E e^{x}}{\Delta^{2} e^{x}}$;
the interval of differencing being h.
$2+3=5$
Or
A second degree polynomial passes through $(0,1),(1,3),(2,7)$ and $(3,13)$. Find the polynomial.
(c) Use Newton's forward interpolation formula

$$
\begin{aligned}
& y=y_{0}+u \Delta y_{0}+\frac{u(u-1)}{2!} \Delta^{2} y_{0}+ \\
& \frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}+\ldots \ldots \ldots \text {, where } \\
& u=\frac{x-x_{0}}{h} \text {, to establish the formula } \\
& \left(\frac{d^{2} y}{d x^{2}}\right)_{x_{0}}=\frac{1}{h^{2}}\left[\Delta^{2} y_{0}-\Delta^{3} y_{0}+\frac{11}{12} \Delta^{4} y_{0}\right. \\
& \left.-\frac{5}{6} \Delta^{5} y_{0}+\frac{137}{180} \Delta^{6} y_{0}+\ldots \ldots \ldots\right]
\end{aligned}
$$

Evaluate :
$\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using Simson's three-eighth formula. Hence, obtain the approximate value of π.
4. Answer either (a) or (b) :
(a) (i) What is meant by divided difference? Prove that the divided differences are symmetrical in all their arguments.
$1+4=5$
(ii) Given :
$\log _{10} 654=2.8156, \log _{10} 658=2.8182$,
$\log _{10} 659=2.8189, \log _{10} 661=2.8202$,
find by using Lagrange's formula, the value of $\log _{10} 656$.
(b) (i) Write briefly when the central difference formulae are used.

Derive Gauss's forward interpolation formula from Newton's forward interpolation formula.
$2+4=6$
[Turn over
(ii) Using Gauss's backward formula, estimate the population of a town for the year 1974 from the following data :

Year	$: 1939$	1949	1959	1969	1979	1989
Population : 12	15	20	27	39	52	
(in thousands)						

5. Answer either (a) or (b) :
(a) (i) Find $f^{\prime}(5)$ from the following table: 5

$\mathrm{x}(:$	0	2	3	4	7	9	
$\mathrm{f}(\mathrm{x})$	$:$	4	26	58	112	466	922

(ii) A curve is drawn to pass through the points given by the following table :

$\mathrm{x}:$	1	1.5	2	2.5	3	3.5	4
$\mathrm{y}:$	2	2.4	2.7	2.8	3	2.6	2.1

Estimate the area bounded by the curve, x-axis and the line $x=1, x=4$. 5
(b) (i) What do you mean by numerical integration? How to solve the problem of numerical integration? $\quad 1+2=3$
(ii) Show that the co-efficients of NewtonCote's formula are symmetric from both the ends.
6. Answer either (a) or (b) :
(a) (i) Establish the Newton-Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Mention two situations where the formula fails to give a solution. $\quad 3+2=5$
(ii) Find a root of the equation $x^{3}-2 x-5=0$, using Secant method correct to three decimal places.
(b) (i) Explain the bisection method with suitable diagram. Why bisection method is not applied to evaluate a double root of an equation.
$4+1=5$
(ii) Evaluate $\sqrt{12}$ to five decimal places by Newton-Raphson method.

