3 (Sem-6) MAT M 5

2014

> MATHEMATICS
> (Major)
> Paper : 6.5
> (Graph and Combinatorics)

Full Marks : 60
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Answer the following as directed :

(a) If A and B are two disjoint events where A occurs in m ways and B occurs in n ways, then in how many ways does the event A or B occur?
(b) How many ways are there to pick an ace or a queen from a deck of cards?
(c) A cubic graph is a - graph. (Fill in the blank)
(d) What is the degree of each point of a complete graph K_{5} ?
(e) Define cutpoint of a graph G.
(f) What is the connectivity of a connected graph with a cutpoint?
(9) Give an example of a graph which is Hamiltonian but not Eulerian.
2. Answer the following questions :
(a) State the rule of product.
(b) How many ways are there to deal a red ace and then another red card from a deck?
(c) Define self-complementary graph.
(d) Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two graphs having disjoint point sets and line sets. Find the number of points and number of lines of $G_{1}+G_{2}$.
3. Answer any three parts :
$5 \times 3=15$
(a) Show that the number of r-sequences from n objects is n^{r}.
(b) Show that a graph G is a tree if and only if every pair of points is connected by a unique path.
(c) Show that among all graphs with p points and q lines, the maximum connectivity is 0 , when $q<p-1$ and is $[2 q / p]$, when $q \geq p-1$, where $[r]$ denotes the greatest integer not exceeding the real number r.
(d) Give an example of a graph which is-
(i) both Eulerian and Hamiltonian;
(ii) Eulerian but non-Hamiltonian.
$2^{1 / 2}+2^{1 / 2}=5$
(e) (i) Does there exist a connected acyclic graph with 10 points and 8 lines? Justify.
(ii) Does there exist a tree with six points having degrees $1,3,4,4,6$? Justify.
$2^{1 / 2}+2^{1 / 2}=5$
4. (a) How many non-negative integer solutions are there to-
(i) $X_{1}+X_{2}+X_{3}+X_{4} \leq 99$;
(ii) $2 X_{1}+X_{2}+X_{3}=4$ with $X_{i} \geq 0$? $\quad 5+5$

Or

(b) (i) What is the probability that a role of three distinct dice produces a sum of ten?

141

(ii) Write equivalent integer-solution of an equation problem for the following :
(1) The number of ways to distribute r identical balls into n distinct cells with at least k balls in the first cell
(2) The number of ways to distribute r identical balls into n distinct cells so that no cell contains more than two balls
5. (a) Define intersection graph with suitable examples. Let G be a connected graph with $p>3$ points. Show that $W(G)=q$ if and only if G has no triangles (where the symbols have their usual meanings). $2+8$

Or
(b) Define (i) a non-separable graph, (ii) a block of a graph and (iii) a bridge in a graph. Show that if G is a block, then-
(i) every two points of G lie on a common cycle;
(ii) every point and line of G lie on a common cycle.
6. (a) Show that the following statements are equivalent for a connected graph G : 10
(i) G is Eulerian
(ii) Every point of G has even degree
(iii) The set of lines of G can be partitioned into cycles

Or

(b) Let G have $p \geq 3$ points. If for every n, $1 \leq n<(p-1) / 2$, the number of points of degree not exceeding n is less than n and if for odd p, the number of points of degree at most $(p-1) / 2$ does not exceed $(p-1) / 2$, then show that G is Hamiltonian.

