3 (Sem-6) MAT M 4

2014

MATHEMATICS
 (Major)
 Paper : 6.4

(Discrete Mathematics)

$$
\text { Full Marks : } 60
$$

Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Answer the following as directed :
(a) State Peano's axioms.
(b) For any integer $n, 4 /\left(n^{2}+2\right)$.
(State whether True or False)
(c) If a, b, c are positive integers, such that $\operatorname{gcd}(a, b, c)=1$. Then what will be the $\operatorname{gcd}(a, b)$ and $\operatorname{gcd}(a, c)$?
(d) State Chinese remainder theorem.
(e) Find all integers $k \geq 3$, such that $5 \equiv k^{2}(\bmod k)$.
(f) Consider the congruence

$$
4 x \equiv 6(\bmod 4)
$$

Find out the correct statement.
The given congruence has
(i) unique solution
(ii) exactly two solutions
(iii) no solution
(iv) exactly four solutions
(g) The equation $18 x+12 y=2$ has no integral solution. Justify the statement.
2. Answer the following questions : $2 \times 4=8$
(a) If p is a prime and $p / a b$, then prove that either p / a or p / b.
(b) Find the remainder when 7^{30} is divided by 4 .
(c) Find all solutions of the Diophantine equation $3 x+2 y=6$
(d) Find all primitive solutions of $x^{2}+y^{2}=z^{2}$ in which $x=40$.
3. Answer the following questions:

$$
5 \times 3=15
$$

(a) If a and b are integers with $b>0$, then show that there exists unique integers q and, r satisfying

$$
a=b q+r, 0 \leq r<b
$$

Or
If a and b are two non-zero integers, show that there exist integers x and y such that $\operatorname{gcd}(a, b)=a x+b y$.
(b) Prove that the quadratic congruence $x^{2}+1 \equiv 0(\bmod p)$, where p is an odd prime, has a solution if and only if $p \equiv 1(\bmod 4)$.

Or

If p is a prime and a is an integer not divisible by p, prove that

$$
a^{p-1} \equiv 1(\bmod p)
$$

Hence show that for every integer a, $a^{p} \equiv a(\bmod p)$.
(c) If p is a prime of the form $4 k+1$, then prove that there exists a solution in integers x, y, m of $x^{2}+y^{2}=m p$, with $0<m<p$.
4. (a) Answer either (i) or (ii):
(i) (1) If p is a prime, prove that

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}
$$

for any positive integer k. For $n>2$, show that $\phi(n)$ is an even integer.
(2) State Möbius inversion formula. If the integer $n>1$ has the prime factorization $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{s}^{k_{s}}$, then prove the following :

$$
\sum_{d / n} \mu(d) \sigma(d)=(-1)^{s} p_{1} p_{2} \cdots p_{s}
$$

$$
2+3=5
$$

(ii) (1) Find the remainder when 35^{33} is divided by 24 .
(2) Define the arithmetic function τ. Evaluate $\tau(180)$. If n is a square-free integer having r prime factors, prove that

$$
\tau(n)=2^{r}
$$

$$
1+2+2=5
$$

(b) Answer either (i) or (ii) : 10
(i) (1) Examine if the following statement forms are tautologies :

$$
\begin{aligned}
& (p \wedge q) \wedge(\sim(p \vee q)) \\
& (p \leftrightarrow q) \leftrightarrow((p \rightarrow q) \wedge(q \rightarrow p))
\end{aligned}
$$

(2) What do you mean by an adequate system of connectives? Show that (\sim, \wedge) is an adequate system of connectives. $2+3=5$
(ii) (1) Construct a truth table for the following statement formula :

$$
(p \wedge \sim q) \vee(q \wedge(\sim p \vee r))
$$

(2) Find the number of different non-equivalent statement formulas containing (A) one statement letter and (B) two statement letters.
(c) Answer either (i) or (ii):
(i) (1) If two Boolean expressions are equivalent, show that their respective disjunctive normal forms contain the same terms. Find the complement of the following Boolean expression in disjunctive normal form: $\quad 3+2=5$

$$
x y z+x^{\prime} y z+x y^{\prime} z+x^{\prime} y^{\prime} z^{\prime}
$$

(2) Find a switching circuit which realizes the Boolean expression

$$
x(y(z+w)+z(u+v))
$$

Construct a truth table for the Boolean expression $x\left(y+x^{\prime}\right)$.
(ii) (1) Express the following Boolean expression in disjunctive normal form and conjunctive normal form in the variables present in the expression

$$
\left(x y^{\prime}+x z\right)^{\prime}+x^{\prime}
$$

(2) Find a switching circuit which realizes the Boolean expression

$$
x+y\left(z+x^{\prime}\left(t+z^{\prime}\right)\right)
$$

Construct a switching table for the switching function represented by the Boolean expression $x y^{\prime}+x^{\prime} y . \quad 3+2=5$

