3 (Sem-6) MAT M 2

2014

MATHEMATICS

> (Major)

Paper : 6.2

(Numerical Analysis)

Full Marks : 60
Time : 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions: $\quad 1 \times 7=7$
(a) What is the normalized floating point representation of real numbers?
(b) Define the term relative error.
(c) If we take $\pi=3 \cdot 14$ instead of 3.14159 , find the absolute error.
(d) Establish the relation, $E \equiv 1+\Delta$.
(e) Write down the value of $\Delta^{n+1} x^{n}$.
(f) When are Newton's interpolation formulae used?
(g) What is the basic principle of numerical differentiation?

121

2. Answer the following questions :
(a) Using normalized floating point representation, add 4546 E 5 and -5433E7.
(b) Show that

$$
\Delta\{\log f(x)\}=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]
$$

(c) Establish the result
$y^{\prime}=\frac{d y}{d x}=\frac{1}{h}\left[\Delta y-\frac{1}{2} \Delta^{2} y+\frac{1}{3} \Delta^{3} y-\frac{1}{4} \Delta^{4} y+\cdots\right]$
where the symbols have their usual meanings.
(d) Write the conditions under which (i) trapezoidal rule and (ii) Simpson's $\frac{1}{3}$ rd rule are valid.
3. Answer the following questions : $5 \times 3=15$
(a) Explain the terms truncation error and round-off error with suitable examples.
(b) Using the method of separation of symbols, prove that

$$
\begin{aligned}
& u_{1} x+u_{2} x^{2}+u_{3} x^{3}+\ldots=\frac{x}{1-x} u_{1}+ \\
& \frac{x^{2}}{(1-x)^{2}} \Delta u_{1}+\frac{x^{3}}{(1-x)^{3}} \Delta^{2} u_{1}+\cdots
\end{aligned}
$$

Obtain the estimate of the missing
figures in the following table :
$x \quad: \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
(ii) In an examination, the number of candidates who obtained marks between certain limits were as follows :

Marks obtained	Number of candidates
$0-19$	41
$20-39$	62
$40-59$	65
$60-79$	50
$80-99$	17

Estimate the number of candidates who obtained less than 70 marks.
(b) (i) State and derive Stirling's central difference formula. Hence or otherwise establish Bessel's formula. $3+3=6$
(ii) Apply Bessel's formula to obtain y_{25}, given $y_{20}=2854, y_{24}=3162$, $y_{28}=3544, y_{32}=3992$. 4
5. Answer either (a) or (b) :
(a) Explain briefly the idea of numerical integration. Establish the general quadrature formula and deduce trapezoidal rule from it. $2+5+3=10$
(b) (i) The velocity $u(\mathrm{~km} / \mathrm{min})$ of a vehicle which starts from rest, is given at fixed intervals of time t (min) as follows :

t	$:$	2	4	6	8	10	12	14	16	18	20
v	$:$	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes, using Simpson's $\frac{1}{3}$ rd rule.
(ii) Compute the integral $\int_{5}^{12} \frac{1}{x} d x$ by applying Gauss's quadrature formula.
6. Answer either (a) or (b) :
(a) (i) State the Newton-Raphson formula and give a geometrical interpretation of it.
(ii) Find a root of the equation $x^{3}-4 x-9=0$, using the bisection method correct to four decimal places.
(b) (i) State the condition of convergence of Newton-Raphson method.

1

16)

(ii) Derive $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$ for determining the square root of $a>0$, using Newton-Raphson formula.2
(iii) Show that the equation $x^{2}+\log x=0$ has exactly one root and the root lies in the interval $\left[\frac{1}{3}, 1\right]$.2
(iv) Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position correct to three decimal places.

