3 (Sem-5) MAT M 6

2014

MATHEMATICS

(Major)

Paper : 5.6
Full Marks: 60
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Choose the correct option for each of the following statements : $\quad 1 \times 7=7$
(a) The set of simultaneous equations

$$
x_{1}+2 x_{2}=8,3 x_{1}+x_{2}=9, x_{1}+x_{2}=4
$$

is
(i) consistent
(ii) inconsistent
(iii) None of the above
(b) The set of points

$$
(1,3,2),(1,-7,-8) \text { and }(2,1,-1)
$$

in \mathbb{R}^{3} is
(i) linearly dependent
(ii) linearly independent
(iii) None of the above
(c) A simplex in n-dimension is a convex polyhedron having
(i) $n-1$ vertices
(ii) n vertices
(iii) $n+1$ vertices
(iv) None of the above
(d) Let $X=\left\{x_{1}, x_{2}\right\} \subset \mathbb{R}^{2}$. Then the convex hull $C(X)$ of X is
(i) $\left\{\lambda x_{1}+(1-\lambda) x_{2}: \lambda \geq 1\right\}$
(ii) $\left\{\lambda x_{1}+(1-\lambda) x_{2}: \lambda \leq 0\right\}$
(iii) $\left\{\lambda x_{1}+(1-\lambda) x_{2}: 0<\lambda<1\right\}$
(iv) None of the above
(e) A linear programming problem (LPP) must have
(i) an objective (goal) that we aim to maximize or minimize
(ii) constraints (restrictions) that we need to specify
(iii) decision variables (activities) that we need to determine
(iv) All of the above
(f) At any iteration of the usual simplex method, if there is at least one basic variable in the basis at zero level and all $z_{j}-c_{j} \geq 0$, the current solution is
(i) infeasible
(ii) unbounded
(iii) non-degenerate
(iv) degenerate
(z_{j}, c_{j} having usual meaning)
(g) A feasible solution to an LPP
(i) must satisfy all of the problems constraints simultaneously
(ii) must be a corner point of the feasible region
(iii) need not satisfy all of the constraints
(iv) must optimize the value of the objective function
2. (a) Justify each of the following statements : $\quad 2 \times 2=4$
(i) The set
$S=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in \mathbb{R}, x_{1}, x_{2}>0, x_{1} x_{2} \geq 1\right\}$ is convex in \mathbb{R}^{2}.
(ii) Let S and T be two convex sets in \mathbb{R}^{n}. Then for any scalars $\alpha, \beta \in \mathbb{R}$, $\alpha S+\beta T$ is also convex in \mathbb{R}^{n}.
(b) Answer each of the following questions:
(i) Find the extreme points of the convex polygon defined by the inequalities

$$
\begin{aligned}
2 x_{1}+x_{2}+9 & \geq 0 \\
-x_{1}+3 x_{2}+6 & \geq 0 \\
x_{1}+2 x_{2}-3 & \leq 0 \\
x_{1}+x_{2} & \leq 0
\end{aligned}
$$

(ii) Show that the linear function

$$
Z=C X, X \in \mathbb{R}^{n}, C \in \mathbb{R}
$$

is a convex function.
3. Answer any three of the following :

$$
5 \times 3=15
$$

(a) Find all basic feasible solutions of the system of equations

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=7 \\
2 x_{1}+x_{2}+x_{3}+2 x_{4}=3
\end{array}
$$

(b) Find graphically the maximum of $Z=2 x+3 y$ subject to

$$
\begin{aligned}
x+y & \leq 30 \\
y & \geq 3 \\
0 \leq y & \leq 12 \\
x-y & \geq 0
\end{aligned}
$$

$$
\text { and } 0 \leq x \leq 20
$$

(c) Explain what you mean by feasible solution and basic feasible solution.
Describe briefly the method of reducing a feasible solution to a basic feasible solution of an LPP

Max $Z=C X$
subject to

$$
\begin{aligned}
A X & =b \\
X & \geq 0
\end{aligned}
$$

under the assumption that the system has at least one feasible solution.
(d) If $x_{1}=1, x_{2}=2, x_{3}=1, x_{4}=3$ is a feasible solution of the set of equations

$$
\begin{aligned}
5 x_{1}-4 x_{2}+3 x_{3}+x_{4} & =3 \\
2 x_{1}+x_{2}+5 x_{3}-3 x_{4} & =0 \\
x_{1}+6 x_{2}-4 x_{3}+2 x_{4} & =15 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

then find a basic feasible solution of the system.
(e) Prove that any convex combination of k different optimum solutions to an LPP

$$
\operatorname{Max} Z=C X, \quad C, X^{T} \in \mathbb{R}^{n}
$$

subject to

$$
\begin{aligned}
A X & =b \\
X & \geq 0
\end{aligned}
$$

is again an optimum solution to the LPP.
4. Prove that if either the primal or the dual problem of an LPP has a finite optimal solution, then the other problem also has a finite optimal solution.
Furthermore, the optimal values of the objective function in both the problems are the same, i.e.

$$
\operatorname{Max} Z_{x}=\operatorname{Max} Z_{w}
$$

Or

Use simplex method to solve the LPP

$$
\operatorname{Max} Z=4 x_{1}+10 x_{2}
$$

subject to the constraints

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 50 \\
2 x_{1}+5 x_{2} & \leq 100 \\
2 x_{1}+3 x_{2} & \leq 90 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

5. Use the two-phase simplex method to solve
$\operatorname{Max} Z=5 x_{1}-4 x_{2}+3 x_{3}$ subject to the constraints

$$
\begin{align*}
2 x_{1}+x_{2}-6 x_{3} & =20 \\
6 x_{1}+5 x_{2}+10 x_{3} & \leq 76 \\
8 x_{1}-3 x_{2}+6 x_{3} & \leq 50 \\
x_{1}, x_{2}, x_{3} & \geq 0 \tag{10}
\end{align*}
$$

(8)

Or

Solve the following assignment problem :

		Project			
		A	B	C	D
Engineer	1	12	10	10	8
	2	14	Not suitable	15	11
	3	6	10	16	4
	4	8	10	9	7

