3 (Sem-5) MAT M 2

2014

MATHEMATICS

(Major)
Paper : 5.2

(Topology)

Full Marks : 60
Time : 3 hours
The figures in the margin indicate full marks
for the questions

1. Answer the following questions : $1 \times 7=7$
(a) Consider the set \mathbb{R} with the usual metric. Which of the following sets are open in \mathbb{R} ?

$$
\begin{aligned}
& A=[0,1[, B=] 0,1[, C=] 0,1], D=[0,1], \\
& E=[0,1[\cup[2,3[, F=\{1\}, G=\{1,2,3\}
\end{aligned}
$$

(b) Find the interior of the following subsets of \mathbb{R} with respect to the usual metric :

$$
A=] 0,1[, B=[0,1[
$$

(c) Give an example of a metric space which is not complete.
(d) Let $X=\{a, b, c\}$ and

$$
\mathscr{T}=\{\phi, X,\{a\},\{b\},\{a, b\}\}
$$

State whether \mathscr{T} is a topology on X.
(e) Let $X=\{a, b, c, d, e\}$ and

$$
\mathscr{B}=\{\{a, b\},\{b, c\},\{a, d, e\}\}
$$

Find the topology on X generated by \mathscr{B}.
(f) Let $X=\{1,2,3,4\}$ and

$$
\mathscr{T}=\{\phi, X,\{1\},\{2\},\{1,2\},\{2,3,4\}\}
$$

Let $f: X \rightarrow X$ be defined by $f(1)=2$, $f(2)=4, f(3)=2, f(4)=3$. State whether f. is continuous at 3 .
(g) Define Banach space and give an example.
2. Answer the following questions : $2 \times 4=8$
(a) If (X, d) is any discrete metric space, describe the open spheres for (X, d).
(b) Let $X=\{a, b, c\}$ and

$$
\mathscr{T}=\{\phi, X,\{b\},\{a, c\}\}
$$

Find the interior and the closure of the set $\{a, b\}$ in (X, \mathscr{T}).
(c) Show that in a normed linear space ($X, \| \cdot \mid 1$)

$$
\mid\|x\|-\|y\| \leq \leq x-y \| \quad \forall x, y \in X
$$

(d) Define an inner product on the space \mathbb{C}^{n} and using this inner product, construct a norm on this space.
3. Answer the following questions :
$5 \times 3=15$
(a) Prove that every convergent sequence in a metric space is a Cauchy sequence. Is the converse true? Justify.
(b) Let $\left(Y, \mathscr{T}_{Y}\right)$ be a subspace of the topological space (X, \mathscr{T}). Prove that a subset A of Y is closed in Y if and only if there exists a set F closed in X such that $A=F \cap Y$.

Or

Prove that a mapping f from a topological space X into another topological space Y is continuous if and only if $f(\bar{A}) \subset \overline{f(A)}$ for every set $A \subset X$.
(c) Let $(X,\langle\cdot, \cdot\rangle)$ be an inner product space. Prove that for all $x, y \in X$

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

Or
In an inner product space $(X,\langle, \cdot\rangle)$, if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then show that

$$
\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle
$$

4. Answer the following questions :
$10 \times 3=30$
(a) Prove that every non-empty open set on the real line is the union of a countable class of pairwise disjoint open intervals. 10

(4)

Or

Let (X, d) be a metric space and $\left\{F_{n}\right\}$ be a nested sequence of non-empty closed subsets of X such that $\delta\left(F_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Prove that X is complete if and only if $\bigcap_{n=1}^{\infty} F_{n}$ consists of exactly one point.
(b) Prove that a metric space is second countable if and only if it is separable.

Or
Define uniformly continuous mapping in metric spaces. Give an example to show that a continuous mapping need not be uniformly continuous. Prove that the image of a Cauchy sequence under a uniformly continuous mapping is itself a Cauchy sequence. $\quad 1+3+6=10$
(c) Prove that a metric space is compact if and only if it is complete and totally bounded.

Or

Prove that the continuous image of a connected metric space is connected. Also, show that the range of a continuous real valued function defined on a connected space is an interval.

