Total No. of printed pages $=7$

3 (Sem 4) MAT M2

2015
 MATHEMATICS
 (Major)
 Paper : M-4.2
 Full Marks -80
 Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following question : $\quad 1 \times 10=10$
(a) What is the physical significance of the moment of a force ?
(b) Under what conditions the effect of a couple is not altered if it is transferred to a parallel plane?
(c) Define Angle of friction.
(d) What is the position of C. G. of a uniform parallelogram lamina?
(e) When a body is said to be in unstable equillibrium?
(f) What is Poinsot's Central axis ?
(g) State the principle of virtual work.
(h) Define amplitude and frequency of a Simple Harmonic Motion.
(i) What are the characteristics of a central orbit?
(j) What do you mean by terminal vilocity ?
2. Answer the following questions : $2 \times 5=10$
(a) Prove that a single force and a couple in the same plane are equivalent to a single force, equal and parallel to the given single force.
(b) The algebraic sum of moments of a system of forces about four points whose coordinates are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ and $\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$ referred to $\overrightarrow{\mathrm{OX}}, \overrightarrow{\mathrm{OY}}$ as rectangular axes are $\mathrm{G}_{1}, \mathrm{G}_{2}$, G_{3}, G_{4} respectively. Show that

$$
\left|\begin{array}{llll}
1 & x_{1} & y_{1} & G_{1} \\
1 & x_{2} & y_{2} & G_{2} \\
1 & x_{3} & y_{3} & G_{3} \\
1 & x_{4} & y_{4} & G_{4}
\end{array}\right|=0
$$

(c) State the laws of Friction.
(d) The speed v of a particle moving along x axis is given by the relation $v^{2}=n^{2}\left(8 b x-x^{2}-12 b^{2}\right)$ Prove that the motion is Simple Harmonic.
(e) Find the law of force towards the pole under which the curve $a u=e^{n \theta}$ is described. (The symbols have their usual meanings).
3. Answer the following questions :
$4 \times 5=20$
(a) Prove that any system of coplanar forces acting on a rigid body can ultimately be reduced to a single force acting at any arbitrarity chosen point in the plane, together with a couple.
(b) A uniform ladder is in equillibrium with one end resting on the ground and other against a vertical wall. If the ground and wall be both rough, the coefficient of friction being μ and μ^{\prime} respectively, and if the ladder be on the point of slipping at both ends, then show that the inclination of the ladder to the horizon is given by $\tan \theta=\frac{1-\mu \mu^{\prime}}{2 \mu}$.

29/3 (Sem 4)MAT M2
(3)
[Turn over
(c) Find the C.G. of the arc of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ lying in the first quadrant.

Or
Find the C.G of the surface formed by the revolution of the cardoid $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ about its axis.
(d) A body moving in a straight line OAB with Simple Harmonic motion has zero velocity at the points A and B whose distances from 0 are a and b respectively and has velocity V when half way between them. Show that the complete period is $\frac{\pi(b-a)}{V}$.
(c) If v_{1} and v_{2} are the linear velocities of a planet when it is respectively nearest and farthest from the sun, prove that $(1-e) v_{1}=(1+e) v_{2}$.
4. Answer the following questions : $\quad 5 \times 4=20$
(a) State and prove the necessary and sufficient conditions that a system of coplanar forces acting on a rigid body may be in equilibrium.
(b) Write down the forces which may be omitted in forming the equation of virtual work of a system of coplanar forces acting at different points of a rigid body.
(c) A point moving in a straight line with Simple Harmonic Motion has velocities v_{1} and v_{2} when its distances from the centre are x_{1} and x_{2}. Show that the period of motion is
$2 \pi /\left(\frac{\mathrm{x}_{1}{ }^{2}-\mathrm{x}_{2}{ }^{2}}{\mathrm{v}_{1}{ }^{2}-\mathrm{v}_{2}{ }^{2}}\right)$
(d) A particle is projected vertically upwards under gravity, supposed constant, in a resisting medium whose resistance varies as the square of the velocity. Show that the velocity of the particle in any position is given by

$$
x=\frac{v^{2}}{2 g} \log \frac{V^{2}+u^{2}}{V^{2}+v^{2}}
$$

5. Answer the following :
(a) Obtain the differential equation of the path of a particle moving in a plane with an acceleration which is always directed to a fixed point in a plane.
(b) One end of an elastic string (modulus of elasticity λ) whose natural length is a, is fixed to a point on a smooth horizontal table and the other is tied to a particle of mass m, which is lying on the table. The particle is
pulled to a distance from the point of attachment of the string equal to twice its natural length and then let go. Show that the time of complete oscillation is $2(\pi+2) \sqrt{ }\left(\frac{\mathrm{am}}{\lambda}\right)$ 5

Or
A particle of mass m is travelling along x-axis such that at $t=0$, it is located at $x=0$ and has speed v_{0}. The particle is acted upon by a force which opposes the motion and has magnitude proportional to the instantaneous speed. Find the speed, position and acceleration of the particle at any time $t(>0)$.
6. Answer the following :
(a) Three forces act along the straight lines $x=0$, $y-z=a ; y=0, z-x=a ; z=0, x-y=a$. Show that they cannot reduce to a couple. 5
(b) A body rests in equillibrium upon another fixed body, the portions of the two bodies in contact have radii of curvature ρ_{1} and ρ_{2} respectively. The centre of gravity of the first body is at a height h above the point of
contact and the common normal makes an angle α with the vertical. Prove that the equillibrium is stable or unstable according as

$$
\begin{equation*}
h<\text { or }>\frac{\rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}} \cos \alpha \tag{5}
\end{equation*}
$$

Or
A square of side : 2 a is placed with its plane vertical between two smooth pegs which are in the same horizontal line at a distance c apart. Show that it will be in equillibrium when the inclination of one of its edges to the horizon is either 45° or

$$
\frac{1}{2} \sin ^{-1}\left(\frac{a^{2}-c^{2}}{c^{2}}\right)
$$

