Total No. of printed pages $=10$
3 (Sem 4) MAT M1

2015

MATHEMATICS

(Major)
Theory Paper : M-4.1

(Real Analysis)

Full Marks - 80
Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following as directed : $1 \times 10=10$
(a) Give an example of a set which is not an interval but is a neighbourhood of each of its points.
(b) Define an open subset of real numbers.
[Turn over
(c) The set of limit points of $\{1,3,5,7,9\}$ is
(i) $\{1,3\}$
(ii) $\{7,9\}$
(iii) $\{1,3,5,9\}$
(iv) None of these
(Choose the correct answer)
(d) Write whether the following statement is true or false :

A sequence having only one limit point is convergent.
(e) The sequence $\left\{\frac{(-1)^{n}}{n}\right\}$ is
(i) Convergent
(ii) Divergent
(iii) Oscillates finitely
(iv) Oscillates infinitely
(Choose the correct answer)
(f) Fill in the blank :

If a function f is derivable on a closed interval $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{f}^{\prime}(\mathrm{a})<0$ and $\mathrm{f}^{\prime}(\mathrm{b})>0$ then there exists at least one point c between a and b such that $\mathrm{f}^{1}(\mathrm{c})=$ \qquad .
(g) If $f(x)=\left\{\begin{array}{cc}x, & 0<x<1 \\ 3-x, & 1 \leq x \leq 2,\end{array}\right.$ then
(I) $\lim _{x \rightarrow 1^{-}} f(x)=1$
(II) $\lim _{x \rightarrow+^{+}} f(x)=2$
(III) $\lim _{x \rightarrow 1} f(x)=2$
(IV) $\lim _{x \rightarrow 1} f(x)=1$

Of these statements
(i) I and III are correct
(ii) II and IV are correct
(iii) I and II are correct
(iv) III alone is correct
(Choose the correct answer)
(h) Find the maximum value of $\sin x+\cos x$.
(i) Evaluate $: \lim _{x \rightarrow 0} \frac{1-\cos x}{3 x^{2}}$
(j) The value of ' C ' in Lagrange's Mean Value theorem for $f(x)=\alpha x^{2}+\beta x+\gamma, \alpha \neq 0$ in $[\mathrm{a}, \mathrm{b}]$ is given by
(i) $\frac{a+b}{2}$
(ii) $\sqrt{\mathrm{ab}}$
(iii) $\frac{2 a b}{a+b}$
(iv) $\frac{a}{b}+\frac{b}{a}$
(Choose the correct answer)
2. Answer the following questions: $2 \times 5=10$
(a) Show that the following set
$\left\{1,-1,1 \frac{1}{2},-1 \frac{1}{2}, 1 \frac{1}{3},-1 \frac{1}{3}-\ldots \ldots\right\}$ is closed but not open.
(b) Show that the series $\sum \frac{(-1)^{n+1}}{n^{p}}$ is absolutely convergent for $\mathrm{p}>1$, but conditionally convergent for $0<p \leq 1$.
(c) Examine the continuity at $\mathrm{x}=0$ of the function $f(x)=[x]-[-x]$ where $[x]$ denotes the largest integer $\leq \mathrm{x}$.
(d) Verify Cauchy's Mean Value theorem for the functions $f(x)=\sin x$ and $g(x)=\cos x$ in $\left[-\frac{\pi}{2}, 0\right]$.
(e) Use Taylor's theorem to show that $\cos x \geq 1-\frac{x^{2}}{2}$ for all $x \geq 0$.
3. Answer any four parts:
$5 \times 4=20$
(a) Prove that a set is closed if and only if its complement is open.
(b) Show that
(i) $\lim _{n \rightarrow \infty}\left[\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\ldots+\frac{1}{(2 n)^{2}}\right]=0$
(ii) $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$
(c) State the Leibnitz test for convergence of an alternating series. Applying the test show that the series
$1-\frac{1}{3 \cdot 2^{2}}+\frac{1}{5 \cdot 3^{2}}-\frac{1}{7 \cdot 4^{2}}+\ldots .$. is convergent.

$$
1+4=5
$$

(d) Show that the series is convergent

$$
\frac{1 \cdot 2}{3^{2} \cdot 4^{2}}+\frac{3 \cdot 4}{5^{2} \cdot 6^{2}}+\frac{5 \cdot 6}{7^{2} \cdot 8^{2}}+\ldots \ldots
$$

(Use Comparison test)
(e) If $f(x)=\left\{\begin{array}{cl}\frac{x\left(e^{\frac{1}{x}}-e^{-\frac{1}{x}}\right)}{e^{\frac{1}{x}}+e^{-\frac{1}{x}}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
show that f is continuous but not derivable at $\mathrm{x}=0$.
(f) (i) Find the values of a and b in order that

$$
\lim _{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{x^{3}}=1
$$

(ii) Evaluate : $\lim _{x \rightarrow 0}\left(\frac{1}{e^{x}-1}-\frac{1}{x}\right) \quad 3+2=5$
4. Answer either (a) and (b) or (c) and (d) : $5 \times 2=10$
(a) Prove that every infinite bounded set has a limit point.
Can an infinite unbounded set have a limit point ? Justify your answer. $\quad 4+1=5$
(b) State Cauchy's General Principle of convergence of a sequence. Using this show that the following sequence $\left\{S_{n}\right\}$ where $S_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\ldots \ldots+\frac{1}{n!}$ is convergent.

$$
1+4=5
$$

(c) Prove that a convergent sequence of real numbers is bounded. Is the converse true ? Justify your answer.
$3+2=5$
(d) Show that the sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$ defined by recursion formula $S_{1}=\sqrt{2}, S_{n+1}=\sqrt{2 S_{n}}$ converges to 2 .
5. Answer either (a) and (b) or (c) and (d) : $5 \times 2=10$
(a) Prove that a necessary condition for convergence of an infinite series $\sum_{n=1}^{\infty} u_{n}$ is $\lim _{n \rightarrow \infty} u_{n}=0$.
With an example show that it is not a sufficient condition. $\quad 3+2=5$

28/3 (Sem 4) MAT MI
[Turn over
(b) State Raabe's test for convergence of a series. Applying this test, examine the convergence of the series

$$
1+\frac{3}{7} x+\frac{3}{7} \cdot \frac{6}{10} x^{2}+\frac{3}{7} \cdot \frac{6}{10} \cdot \frac{9}{13} x^{3}+\ldots \ldots
$$

(c) Applying Logarithmic test prove that the series $1+\frac{1!}{2} x+\frac{2!}{3^{2}} x^{2}+\frac{3!}{4^{3}} x^{3}+$ converges if $x<e$ and diverges if $x \geq e .5$
(d) Test the convergence of the series

$$
\begin{aligned}
& 1+\frac{\alpha \beta}{1 \cdot \gamma} x+\frac{\alpha(\alpha+1) \beta(\beta+1)}{1 \cdot 2 \cdot \gamma(\gamma+1)} x^{2}+ \\
& \frac{\alpha(\alpha+1)(\alpha+2) \beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma+1)(\gamma+2)} x^{3}+\ldots \ldots
\end{aligned}
$$

for all positive values of $x ; \alpha, \beta, \gamma$ being all positive.
6. Answer the following questions :
(a) Prove that if a function is continuous in a closed interval, then it is bounded therein. 5

Or

Show that the function f defined by $f(x)=\left\{\begin{aligned}-x, & \text { if } x \text { is rational } \\ x, & \text { if } x \text { is irrational }\end{aligned}\right.$ is continuous only at $\mathrm{x}=0$.
(b) Define uniform continuity of a function on an interval.
Prove that every uniformly continuous function on an interval is continuous on that interval.
Justify with an example that the converse is not true.

$$
1+2+2=5
$$

Or
(c) Show that the function $f(x)=\frac{1}{x^{2}}$ is uniformly continuous on (a, \propto), where $a>0$ but not uniformly continuous on $(0, \infty)$. 5
7. Answer any two parts :
(a) State Rolle's theorem. Using it prove that if $f^{\prime}(x)$ and $g^{\prime}(x)$ exist for all $x \in[a, b]$, and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then for some c between a and $b, \frac{f(c)-f(a)}{g(b)-g(c)}=\frac{f^{\prime}(c)}{g^{1}(c)}$.

$$
1+4=5
$$

(b) Show that

$$
\frac{v-u}{1+v^{2}}<\tan ^{-1} v-\tan ^{-1} u<\frac{v-u}{1+u^{2}}, \text { if } 0<u<v .
$$

Hence deduce that $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$.

$$
3+2=5
$$

(c) Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a is $\frac{2 \mathrm{a}}{\sqrt{3}}$. 5
(d) Find Maclaurin's power series expansion for the function

$$
f(x)=\log (1+x) \text { for }-1<x \leq 1
$$

