3 (Sem-3) MAT M 2

2014

MATHEMATICS
 (Major)

Paper : 3.2
Full Marks : 80
Time : 3 hours
The figures in the margin indicate full marks
for the questions

GROUP-A

(Linear Algebra)

$$
\text { (Marks : } 40 \text {) }
$$

1. Answer the following as directed: $1 \times 6=6$
(a) Let W be a subset of the vector space $\mathbb{R}^{3}(\mathbb{R})$ defined by

$$
W=\{(x, y, z) \mid x, y, z \in \mathbb{R} \text { and } x+2 y+4 z=4\}
$$

Is W a subspace? Justify.
(b) Show that each non-zero singleton set $\{x\}$ of a vector space is linearly independent.
(c) If M is the vector space of all $m \times n$ matrices, determine $\operatorname{dim} M$.
(d) The product of all the eigenvalues of a square matrix A is equal to
(i) 0
(ii) 1
(iii) $|A|$
(iv) $\frac{1}{|A|}$
(Choose the correct answer)
(e) The matrix

$$
A=\left(\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right)
$$

satisfies the equation
(i) $A^{2}+5 A+7 I=0$
(ii) $A^{2}+5 A-7 I=0$
(iii) $A^{2}-5 A-7 I=0$
(iv) $A^{2}-5 A+7 I=0$
(Choose the correct answer)
(f) State the condition for a system of n equations in n unknowns to have a unique solution.
2. Answer the following :
(a) Show that the $2 \times 2=4$ of a vector space of two subspaces a subspace of the vector space.
(b) Show that the matrices A and A^{\prime} have the same eigenvalues.
3. Answer any one part :
(a) (i) Let U and W be subspaces of a vector space $V(F)$. Then show that $V=U \oplus W \Leftrightarrow V=U+W$ and $U \cap W=\{0\}$.
(ii) Show that the vectors $(1,2,5)$, $(2,5,1)$ and $(1,5,2)$ are linearly independent in the vector space $\mathbb{R}^{3}(\mathbb{R})$.
(iii) If V is a finite dimensional vector space and $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a linearly independent subset of V, then prove that it can be extended to form a basis of V.
$4+2+4=10$
(b) (i) If W_{1} and W_{2} are subspaces of a finite dimensional vector space $V(F)$, then show that

$$
\begin{aligned}
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1} & +\operatorname{dim} W_{2}- \\
& \operatorname{dim}\left(W_{1} \cap W_{2}\right)
\end{aligned}
$$

(ii) Define basis of a vector space. Determine whether or not the vectors ($1,1,2$), ($1,2,5$), $(5,3,4)$ form a basis of the vector space $\mathbb{R}^{3}(\mathbb{R})$.
4. Answer any two parts :
(a) Define rank and nullity of a linear transformation T from a vector space $V(F)$ to a vector space $W(F)$. Find rank and nullity of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(x, y, z)=(x+y+z, 2 x+2 y+2 z) \quad 1+4=5
$$

(b) Let T be a linear operator on a vector space $V(F)$ and $\operatorname{rank} T^{2}=\operatorname{rank} T$. Then show that range $T \cap \operatorname{ker} T=\{0\}$.
(c) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear mapping defined by

$$
T(x, y, z)=(3 x+2 y-4 z, x-5 y+3 z)
$$

Find the matrix A representing T relative to the bases $B=\{(1,1,1),(1,1,0),(1,0,0)\}$ of $\mathbb{R}^{3}(\mathbb{R})$ and $B^{\prime}=\{(1,3),(2,5)\}$ of $\mathbb{R}^{2}(\mathbb{R})$.
5. Answer any one part :
(a) (i) Find the eigenvalues and the corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right)
$$

61

Group-B

(Vector)

(Marks : 40)
6. Answer the following as directed :
(a) Evaluate $(\vec{r} \cdot \hat{i}) \hat{i}+(\vec{r} \cdot \hat{j}) \hat{j}+(\vec{r} \cdot \hat{k}) \hat{k}$.
(b) Write the value of $\operatorname{div}(\nabla \phi \times \nabla \psi)$.
(c) If ϕ is a continuously differentiable scalar point function, the value of curl grad ϕ is
(i) 1
(ii) -1
(iii) $\overrightarrow{0}$
(iv) None of the above
(Choose the correct answer)
(d) If C is a closed curve, find $\oint_{C} \vec{r} \cdot d \vec{r}$.
7. Answer the following :
(a) Prove the identity

$$
\vec{a} \times[\vec{a} \times(\vec{a} \times \vec{b})]=(\vec{a} \cdot \vec{a}) \cdot(\vec{b} \times \vec{a})
$$

(b) Find $\operatorname{div} \operatorname{curl} \vec{F}$, if $\vec{F}=x^{2} y \hat{i}+x \hat{z}+2 y z \hat{k}$.
(c) Interpret the relations

$$
\vec{r} \cdot \frac{d \vec{r}}{d t}=0 \text { and } \vec{r} \times \frac{d \vec{r}}{d t}=\overrightarrow{0}
$$

8. Answer any one part :
(a) (i) Prove that

$$
\begin{aligned}
&(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})+(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+ \\
&(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0}
\end{aligned}
$$

(ii) Prove that $\nabla^{2}\left(\frac{1}{\vec{r}}\right)=0$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.
(iii) If

$$
\vec{A}=x y z \hat{i}+x z^{2} \hat{j}-y^{3} \hat{k}
$$

and

$$
\vec{B}=x^{3} \hat{i}-x y z \hat{j}+x^{2} z \hat{k}
$$

calculate

$$
\frac{\partial^{2} \vec{A}}{\partial y^{2}} \times \frac{\partial^{2} \vec{A}}{\partial x^{2}}
$$

at the point $(1,1,3)$.
(b) (i) Prove that

$$
[\vec{b}+\vec{c} \vec{c}+\vec{a} \vec{a}+\vec{b}]=2[\vec{a} \vec{b} \vec{c}]
$$

Hence show that $\vec{a}, \vec{b}, \vec{c}$ are coplanar, iff $\vec{b}+\vec{c}, \vec{c}+\vec{a}, \vec{a}+\vec{b}$ are coplanar.

81

(ii) Prove that

$$
\operatorname{curl}(f \vec{F})=\operatorname{grad} f \times \vec{F}+f(\operatorname{curl} \vec{F})
$$

where f is a scalar point function.
(iii) Find the unit normal vector to the surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$.
$4+3+3=10$
9. Answer any two parts :

- $5 \times 2=10$
(a) If $\vec{a}, \vec{b}, \vec{c}$ are three vectors, then prove that

$$
[\vec{a} \vec{b} \vec{c}]^{2}=\left|\begin{array}{lll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\
\vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\
\vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}
\end{array}\right|
$$

(b) Prove that

$$
\begin{aligned}
& \operatorname{curl}(\vec{a} \times \vec{b})=(\vec{b} \cdot \nabla) \vec{a}-(\vec{a} \cdot \nabla) \vec{b}+ \\
& \qquad \vec{a} \operatorname{div} \vec{b}-\vec{b} \operatorname{div} \vec{a}
\end{aligned}
$$

(c) Show that

$$
\int\left(\vec{r} \times \frac{d^{2} \vec{r}}{d t^{2}}\right) d t=\vec{r} \times \frac{d \vec{r}}{d t}+C
$$

where C is an arbitrary constant vector. If $\vec{r}(t)=5 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k}$, then prove that

$$
\int_{1}^{2}\left(\vec{r} \times \frac{d^{2} r}{d t^{2}}\right) d t=-14 \hat{i}+75 \hat{j}-15 \hat{k}
$$

10. Answer any one part :
(a) (i) Evaluate $\int_{V}(2 x+y) d V$, where V is a closed region bounded by the cylinder $z=4-x^{2}$ and the planes $x=0, y=0, y=2$ and $z=0$.
(ii) Verify Green's theorem in the plane for

$$
\oint_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y
$$

where C is the square with vertices $(0,0),(2,0),(2,2)$ and $(0,2)$.

$$
5+5=10
$$

(b) (i) Find the work done in moving a particle once around a circle C in the $x y$-plane, if the circle has centre at the region and radius 2 and, if the force field \vec{F} is given by

$$
\begin{array}{r}
\vec{F}=(2 x-y+2 z) \hat{i}+(x+y-z) \hat{j}+ \\
(3 x-2 y-5 z) \hat{k}
\end{array}
$$

(ii) State Gauss' divergence theorem. Using it, evaluate $\iint_{S} \vec{F} \cdot \hat{n}$, where $\vec{F}=x \hat{i}-y \hat{j}+\left(z^{2}-1\right) \hat{k}$ and S is the cylinder formed by the surfaces $z=0, z=1, x^{2}+y^{2}=4$.
$5+5=10$

A15-1700/359
3 (Sem-3) MAT M 2

