3 (Sem-3) MAT M 1

2014

MATHEMATICS
 (Major)
 Paper: 3.1

(Abstract Algebra)

Full Marks: 80
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Answer the following as directed : $1 \times 10=10$
(a) Let G and G^{\prime} be finite groups such that $\operatorname{gcd}\left(o(G), o\left(G^{\prime}\right)\right)=1$. Define a homomorphism from G to G^{\prime}.
(b) State the fundamental theorem of group homomorphism.
(c) Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Let $a \in G$ be such that $o(a)=n$ and $o(f(a))=m$. Then $o(f(a)) / o(a)$ and f is one-one if and only if
(i) $m>n$
(ii) $m<n$
(iii) $m=n$
(iv) $m=n=1$
(Choose the correct option)

12)

(d) Let $R=\{0,1,2\} \bmod 3$. What is the characteristic of R ?
(e) State whether True or False :

If an element a of a group G has only two conjugates in G, then $N(a)$ is a normal subgroup of G.
$(N(a)$: normalizer of a in G)
(f) State Cauchy's theorem for a finite group G.
(g) If T is an automorphism of a group G, then $o(T a)=o(a)$ for all $a \in G$. Now, for all $a, b \in G$
(i) $o\left(b a b^{-1}\right)=o(b)$
(ii) $o\left(b a b^{-1}\right)=o(a)$
(iii) $o\left(b a b^{-1}\right)=o(T b)$
(iv) $o\left(b a b^{-1}\right)=2$
(Choose the correct option)
(h) Give an example of a Euclidean domain.
(i) Let $R[x]$ be the ring of polynomials of a ring R and let

$$
\begin{aligned}
& \qquad f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \\
& \text { and } g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \\
& \text { If } f(x)+g(x) \neq 0 \text {, then } \\
& \text { (i) } \operatorname{deg}(f(x)+g(x)) \leq \max (m, n) \\
& \text { (ii) } \operatorname{deg}(f(x)+g(x)) \geq m+n \\
& \text { (iii) } \operatorname{deg}(f(x)+g(x))=m+n \\
& \text { (iv) } \operatorname{deg}(f(x)+g(x)) \geq \max (m, n)
\end{aligned}
$$

(Choose the correct option)
(j) State True or False :

In a principal ideal domain, every non-zero prime ideal is maximal.
2. Answer the following questions :
(a) Let \mathbb{Z} be the additive group of integers and $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $\phi(x)=x+1$, $x \in \mathbb{Z}$. Examine if ϕ is a homomorphism.
(b) If R is a ring with no non-zero nilpotent elements, then show that for any idempotent e, ex $=x e \forall x \in R$.
(c) The sum of two subspaces of a vector space is again a subspace.

Justify whether it is true or false.
(d) Let G be a group and $Z(G)$ be the centre of G. Show that if $\operatorname{cl}(a)=\{a\}$, then $a \in Z(G) .(\mathrm{cl}(a)$: the conjugacy class of $a)$
(e) Let f be a homomorphism from a ring R onto a ring R^{\prime}. If e is the unity of R, then $f(e)$ is the unity of R^{\prime}.
Justify whether this statement is true or
3. Answer the following questions :
$5 \times 4=20$
(a) Let $G=(\mathbb{R},+), G^{\prime}=(\{Z \in \mathbb{C}:|Z|=1\}$, $)$) and $\phi: G \rightarrow G^{\prime}$ is defined by

$$
\phi(x)=\cos 2 \pi x+i \sin 2 \pi x, \quad x \in \mathbb{R}
$$

Prove that ϕ is a homomorphism and
determine ker ϕ.
Or
If
homomorphism, prove that H is a normal subgroup of G if and only if $f(H)$ is a normal subgroup of G^{\prime}.
(b) If R is a division ring, then show that the centre $Z(R)$ of R is a field.
Or

Let R be a ring having more than one element such that $a R=R$, for all $0 \neq a \in R$. Show that R is a division ring.
(c) Prove that a group of order p^{2}, where p is prime, is Abelian.
(d) Prove that every ideal in a Euclidean domain is a principal ideal.
4. Answer the following questions : $10 \times 4=40$
(a) Let H and K be two normal subgroups of a group G such that $H \subseteq K$. Prove that

$$
\frac{G}{K} \cong \frac{G / H}{K / H}
$$

Or

Let G be the additive group of reals and N be the subgroup of G consisting of integers. Prove that $\frac{G}{N}$ is isomorphic to the group H of all complex numbers of absolute value 1 under multiplication.
(b) Let A, B, C be ideals of a ring R such that $B \subseteq A$. Show that

$$
\begin{gathered}
A \cap(B+C)=(A \cap B)+(A \cap C)=B+(A \cap C) \\
\text { Or }
\end{gathered}
$$

Let R be a commutative ring with unity. Show that every maximal ideal of R is also a prime ideal. Moreover, prove that if every ideal of R is prime, then R is a field.

16)

(c) State Sylow's 1st and 3rd theorems for a group G. Let $o(G)=p q$, where p, q are distinct primes such that $p<q, p \nmid q-1$. Show that G is cyclic. $2+8=10$

Or

Let G be a finite group and $a \in G$. Prove that

$$
\begin{equation*}
o(c l(a))=\frac{o(G)}{o(N(a))} \tag{10}
\end{equation*}
$$

(d) Show that $\mathbb{Z}[\sqrt{2}]=\{a+\sqrt{2} b: a, b \in \mathbb{Z}\}$ is a Euclidean domain.

Or
Prove that any ring can be imbedded into a ring with unity.

