Total No. of printed pages $=7$
3 (Sem 2) MAT M1

2015

MATHEMATICS

(Major)

Paper : 2.1
(Co-ordinate Geometry)
Full Marks - 80
Time - Three hours
The figures in the margin indicate full marks for the questions.

1. (a) Transform the equation $y^{2}-4 x+4 y+8=0$ to parallel axes through the point $(1,-2)$. 1
(b) What is the angle between the lines represented by the equation $x^{2}-y^{2}=0$? 1
(c) What is the equation of the tangent to the parabola $y^{2}=4 a x$ at the point $\left(x_{1}, y_{1}\right)$? 1
(d) What is the eccentricity of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad(b>a) ?
$$

(e) Write down the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
(f) What are the direction ratios of the normal to the plane

$$
x+y+z=1 ?
$$

(g) Define skew lines.
(h) Write down the centre and radius of thè sphere given by the equation
$x^{2}+y^{2}+z^{2}-2 x-4 y+6 z=22$
(i) What is the general equation of a second degree cone passing through the coordinate axes ?
(j) Define enveloping cylinder.
2. (a) Find the transformed equation of the line $y=x$ when the axes are rotated through an angle 45°.

2
(b) Find the value of K so that the following equation may represent pair of straight lines -
$K x y-8 x+9 y-12=0$
(c) Find the equation of the cone whose vertex is at the origin and whose guiding curve is given by

$$
\begin{equation*}
x=a, \quad y^{2}+z^{2}=b^{2} \tag{2}
\end{equation*}
$$

(d) If $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ are the extremities of any focal chord of the parabola $y^{2}=4 a x$, prove that $t_{1} t_{2}=-1$
(e) Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9, \quad 2 x+3 y+4 z=5$ and the origin.
3. (a) Transform the equation
$3 x^{2}+8 x y+3 y^{2}-2 x+2 y-2=a^{2}$ referred to a new set of axes through $(-1,1)$ rotated through an angle $\pi / 4$.
(b) Show that the equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel straight lines if $\frac{\mathrm{a}}{\mathrm{h}}=\frac{\mathrm{h}}{\mathrm{b}}=\frac{\mathrm{g}}{\mathrm{f}}$

Or

Show that the straight lines joining the origin to the other two points of intersection of the curves whose equations are

$$
\begin{aligned}
& a x^{2}+2 h x y+b y^{2}+2 g x=0 \quad \text { and } \\
& a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0
\end{aligned}
$$

will be at right angles if $g\left(a^{\prime}+b^{\prime}\right)=g^{\prime}(a+b)$
4. (a) Prove that the line $l \mathrm{x}+\mathrm{my}=\mathrm{n}$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ if

$$
\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}
$$

(b) A sphere of constant radius r passes through the origin O and cut the axes at A, B and C. Prove that the locus of the foot of the perpendicular from O to the plane $A B C$ is $\left(x^{2}+y^{2}+z^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)=4 r^{2}$

Or
Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes
$y+z=0, \quad z+x=0, \quad x+y=0, \quad x+y+z=a$ is $\frac{2 \mathrm{a}}{\sqrt{6}}$ and that the three lines of shortest distance intersect at the point $(-a,-a,-a)$
5. Answer any four parts :
(a) Show that the equation of the tangent to the conic

$$
\frac{l}{r}=1+e \cos \theta
$$

at the point whose vectorial angle is α is $\frac{l}{r}=e \cos \theta+\cos (\theta-\alpha)$
(b) Reduce the equation
$7 x^{2}-2 x y+7 y^{2}-16 x+16 y-8=0$
to the standard form.
(c) Find the lengths of the semi-axes of the conic
$a x^{2}+2 h x y+a y^{2}=d$
(d) Prove that the equation of the polar of the origin with respect to the conic
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
is $g x+f y+c=0$
(e) Prove that the middle points of chords of the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

parallel to the diameter $\mathrm{y}=\mathrm{mx}$ lie on the diameter $a^{2} m y=b^{2} x$.
(f) Find the asymptotes of the hyperbola

$$
2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0
$$

6. Answer any four parts : $\quad 5 \times 4=20$
(a) Find the condition that the two lines whose equations are

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}
$$

and $\frac{\mathrm{x}-\mathrm{x}_{2}}{\mathrm{l}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{2}}{\mathrm{~m}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{2}}{\mathrm{n}_{2}}$ may intersect and also find the equation of the plane in which they lie.
(b) Prove that the plane $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=0$ cuts the cone $y z+z x+x y=0$ in perpendicular lines if $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
(c) Find the equation of the cylinder whose generators are parallel to the line

$$
2 x=y=3 z
$$

and which passes through the circle

$$
y=0, \quad x^{2}+z^{2}=8
$$

(d) Find the equation of the tangent planes to $2 x^{2}-6 y^{2}+3 z^{2}=5$ which pass through the line $x+9 y-3 z=0, \quad 3 x-3 y+6 z-5=0$
(e) Find the condition that the plane

$$
l \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{p}
$$

may be a tangent plane to the conicoid

$$
a x^{2}+b y^{2}+c z^{2}=1
$$

(f) Find the condition that the line

$$
\frac{x-2}{l}=\frac{y-1}{m}=\frac{z-3}{n}
$$

may touch the ellipsoid

$$
3 x^{2}+8 y^{2}+z^{2}=c^{2}
$$

