3 (Sem-2) MAT M 1

2014

MATHEMATICS
(Major)
Paper : 2.1

(Coordinate Geometry)
Full Marks : 80

Time : 3 hours

The figures in the margin indicate full marks for the questions

1. (a) What will be the equation of the line $a x+b y+c=0$, if the origin is transferred to the point (α, β) ?
(b) What is the locus represented by the equation $x^{2}-5 x y+6 y^{2}=0$?
(c) About which axis the parabola $y^{2}=4 a x$ is symmetric? Justify your answer.
(d) The parametric equations $x=a \sec \phi$, $y=b \tan \phi$ represent (i) an ellipse, (ii) a parabola, (iii) a hyperbola.
Find the correct answer from above.
(e) Write the relationship between the lengths of semi-major axis, semi-minor axis and the eccentricity for the standard equation of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, b>a
$$

(f) What are the direction cosines of the normal to the plane given by the equation $2 x-4 y+3 z=9$?
(g) Find the radius and centre of the sphere

$$
x^{2}+y^{2}+z^{2}-2 x+4 y-6 z=2
$$

(h) What is the general equation of a second-degree cone passing through the coordinate axes?
(i) The shortest distance between the two lines

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \\
& \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}
\end{aligned}
$$

is given to be zero. What conclusion can you make about the lines?
(j) What are the basic natures of the guiding curve and the generator for a right-circular cylinder?
2. (a) Prove that the equation

$$
2 x^{2}-5 x y+3 y^{2}-2 x+3 y=0
$$

represents two lines.
(b) Prove that the equation

$$
y^{2}+2 a x+2 b y+c=0
$$

represents a parabola, whose axis is parallel to the axis of x.
(c) Find the equation of the plane through the point $(2,3,5)$ and parallel to the plane $2 x-4 y+3 z=9$.
(d) Find the equation of the right-circular cone whose vertex is the origin, axis is the z-axis and semi-vertical angle is α.
(e) The axis of a right-circular cylinder is

$$
\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z-3}{5}
$$

and its radius is 5 . Find its equation.
3. (a) If by a rotation of the rectangular axes about the origin, the expression $a x^{2}+2 h x y+b y^{2}$ changes to

$$
a^{\prime} x^{\prime 2}+2 h^{\prime} x^{\prime} y^{\prime}+b^{\prime} y^{\prime 2}
$$

then show that

$$
\begin{align*}
a+b & =a^{\prime}+b^{\prime} \\
a b-h^{\prime} & =a^{\prime} b^{\prime}-h^{\prime 2} \tag{5}
\end{align*}
$$

(b) Find the condition that the general equation of second degree

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

represents a pair of straight lines.
Or

Prove that the straight lines represented by the equation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

will be equidistant from the origin if

$$
f^{4}-g^{4}=c\left(b f^{2}-a g^{2}\right)
$$

4. (a) Find the equation of the plane which passes through the point $(2,1,4)$ and is perpendicular to the planes

$$
\begin{array}{r}
9 x-7 y+6 z+48=0 \\
x+y-z=0
\end{array}
$$

(b) Prove that the lines

$$
\begin{aligned}
& \qquad \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \\
& \text { and } 4 x-3 y+1=0=5 x-3 z+2 \quad \text { are } \\
& \text { coplanar. }
\end{aligned}
$$

(e) Prove that the equation of the polar of the origin with respect to the conic $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \quad$ is $g x+f y+c=0$.
(f) Find the condition that the line $l x+m y+n=0$ is a tangent to the conic

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

6. Answer any four parts :

$$
5 \times 4=20^{6}
$$

(a) Find the equations of the tangent planes to the sphere $x^{2}+y^{2}+z^{2}=49$ which passes through the line

$$
2 x+z-21=0=3 y-z+14
$$

(b) Show that the equation of the cylinder whose generators are parallel to the line

$$
\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}
$$

and guiding curve is $x^{2}+2 y^{2}=1, z=3$ is

$$
\begin{aligned}
& 3\left(x^{2}+2 y^{2}+z^{2}\right)+8 y z-2 z x+ 6 x-24 y \\
&-18 z+24=0
\end{aligned}
$$

(c) Prove that the section of a cone with vertex P and guiding curve the ellipse $z=0, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by the y-plane is a rectangular hyperbola.
(d) Find where the line

$$
\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+3}{4}
$$

meets the plane

$$
2 x+4 y-z+1=0
$$

(e) Find the equations of the tangent planes to the conicoid $2 x^{2}+3 y^{2}-4 z^{2}=1$ which are parallel to the plane $x-3 y+z=0$.
(f) Show that any normal to the conicoid

$$
\frac{x^{2}}{p a+q}+\frac{y^{2}}{p b+q}+\frac{z^{2}}{p c+q}=1
$$

is perpendicular to its polar line with respect to the conicoid

$$
\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}=1
$$

