3 (Sem-1) MAT M 1

2014

MATHEMATICS

(Major)
Paper : 1.1
Full Marks: 80
Time : 3 hours
The figures in the margin indicate full marks for the questions

SECTION-A

1. Choose the correct answer :
$1 \times 10=10$
(a) Which of the following relations is symmetric but neither reflexive nor transitive?
(i) $R_{1}=\left\{(a, b) \mid a^{2}+b^{2}=1\right\}$ on the set of real numbers
(ii) $R_{2}=\{(a, b) \mid(a-b)$ is divisible by 3$\}$ on the set of all integers
(iii) $R_{3}=\{(a, b) \mid a$ is a multiple of $b\}$ on the set of natural numbers
(iv) $R_{4}=\{(a, b) \mid 1+a b>0\}$ on the set of real numbers
(b) If a and b are any two elements of a group G, then $\left(a^{-1} b\right)^{-1}$ is
(i) $a^{-1} b^{-1}$
(ii) $a b^{-1}$
(iii) $b^{-1} a$
(iv) $b^{-1} a^{-1}$
(c) If a is an element of a group G, then which of the following is not true?
(i) $o(a)=o\left(a^{-1}\right)$
(ii) $O(a)<o\left(a^{2}\right)$
(iii) $O(a) \geq o\left(a^{2}\right)$
(iv) $o(a)=O\left(x^{-1} a x\right), x \in G$
(d) The value of $\sin \left(\log i^{i}\right)$ is
(i) 1
(ii) -1
(iii) $\frac{1}{2}$
(iv) $\frac{1}{\sqrt{2}}$
(g) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$, then the value of $\Sigma \alpha^{2} \beta$ is
(i) $\mathrm{pr}-4 \mathrm{~s}$
(ii) $p^{2}-2 q$
(iii) $-p q+3 r$
(iv) $r^{2}-2 q s$
(h) If A is a symmetric matrix, then $B^{\prime} A B$, where B is any square matrix of same order, is
(i) symmetric
(ii) skew-symmetric
(iii) Hermitian
(iv) skew-Hermitian
(i) If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear, then the rank of the matrix

$$
\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right)
$$

is
(i) 3
(ii) <3
(iii) >3
(iv) ≥ 3
(d) Expand $\sin ^{3} x$ in ascending powers of x.
(e) Solve the equation

$$
2 x^{4}-3 x^{3}-3 x^{2}-3 x-1=0
$$

which has one root $1+\sqrt{2}$.

SECTION-C

3. Answer any four parts :

$$
5 \times 4=20
$$

(a) Let G be a group. For any $a \in G$, define equivalence class $\mathrm{Cl}(a)$ of a. If \sim is an equivalence relation on a non-empty set X, then prove that for any $a, b \in X$
(i) $\mathrm{Cl}(a) \neq \phi$
(ii) either $\mathrm{Cl}(a) \cap \mathrm{Cl}(b)=\phi$ or $\mathrm{Cl}(a)=\mathrm{Cl}(b)$
(iii) $X=\bigcup_{a \in X} \operatorname{Cl}(a)$
$1+4=5$
(b) Prove that a mapping $f: X \rightarrow Y$ is bijective if and only if \exists a mapping $g: Y \rightarrow X$ such that $g \circ f$ and $f \circ g$ are identity maps on X and Y respectively.
(c) Show that the union of two subgroups of a group G is a subgroup if and only if one of them is contained in the other.
(d) (i) If
$\cos \alpha+\cos \beta+\cos \gamma=\sin \alpha+\sin \beta+\sin \gamma=0$
then prove that

$$
\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)
$$

and

$$
\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)
$$

(ii) Prove that

$$
(-i)^{(-i)}=e^{(4 n-1) \frac{\pi}{2}}
$$

(e) If α, β, γ are the roots of the equation $x^{3}+a x+b=0$, find the equation whose roots are $\alpha^{2}+\beta^{2}, \beta^{2}+\gamma^{2}, \gamma^{2}+\alpha^{2}$.
(f) If A is a non-singular matrix, then show that adj adj $A=|A|^{n-2} A$

SECTION-D

4. Answer any one part :
(a) (i) Suppose for fixed $n>1$ and for all a, b in a group $G,(a b)^{n}=a^{n} b^{n}$. Show that $(a b)^{n-1}=b^{n-1} a^{n-1}$.
(ii) Prove that an infinite cyclic group has precisely two generators.

181

(iii) Prove that a subgroup H of a group G is a normal subgroup in G if and only if $g^{-1} h g \in H$ for all $h \in H$, $g \in G$.

$$
2+4+4=10
$$

(b) (i) Show that a subgroup of index 2 in a group G is a normal subgroup of G.
(ii) If H is a subgroup of a group G and $a \in G$, then prove that

$$
H a=H \Leftrightarrow a \in H
$$

(iii) Let $a, n(n \geq 1)$ be any integers such that g.c.d. $(a, n)=1$, then prove that

$$
a^{\phi(n)} \equiv 1(\bmod n) \quad 3+2+5=10
$$

5. Answer any one part :
(a) (i) If z is a complex number such that the amplitude of $\frac{z-i}{z+i}$ is $\frac{\pi}{4}$, then show that the point z lies on a circle in the complex plane.
(ii) If $x<(\sqrt{2}-1)$, then prove that

$$
\begin{aligned}
& 2\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\cdots\right)= \\
& \quad \frac{2 x}{1-x^{2}}-\frac{1}{3}\left(\frac{2 x}{1-x^{2}}\right)^{3}+\frac{1}{5}\left(\frac{2 x}{1-x^{2}}\right)^{5}-\cdots
\end{aligned}
$$

(iii) If $\tan (\alpha+i \beta)=x+i y$, then prove that $x^{2}+y^{2}+2 x \cot 2 \alpha-1=0$ and $x^{2}+y^{2}-2 y \operatorname{coth} 2 \beta+1=0 . \quad 3+3+4=10$
(b) (i) If a and b are complex numbers, then show that

$$
\left|a+\sqrt{a^{2}-b^{2}}\right|+\left|a-\sqrt{a^{2}-b^{2}}\right|=|a+b|+|a-b|
$$

(ii) Separate into its real part and imaginary part of the expression $(\alpha+i \beta)^{x+i y}$.
(iii) Prove that

$$
\begin{aligned}
(1+\cosh \theta & +\sinh \theta)^{n} \\
= & 2^{n} \cosh ^{n} \frac{\theta}{2}\left(\cosh \frac{n \theta}{2}+\sinh \frac{n \theta}{2}\right)
\end{aligned}
$$

6. Answer any two parts :
(a) If α, β, γ are roots of the equation $x^{3}-p x^{2}+q x-r=0$, find the value of $\sum \frac{\beta}{\gamma}+\frac{\gamma}{\beta}$ and $\sum \alpha^{3} \beta^{3}$.
(b) (i) Find the equation whose roots are the roots of the equation $x^{3}+3 x^{2}-8 x+1=0$, each increased by 1 .
(ii) Apply Descartes' rule of signs to find the nature of roots of the equation $x^{6}-3 x^{2}-2 x-3=0 . \quad 2+3=5$
(c) If the equation $x^{3}+p x^{2}+q x+r=0$ has a root $\alpha+i \alpha$, where p, q, r and α are reals, then prove that $\left(p^{2}-2 q\right)\left(q^{2}-2 p r\right)=r^{2}$.
(d) Solve the following equation by Cardon's method $x^{3}+9 x^{2}+15 x-25=0$
7. Answer any two parts :

$$
5 \times 2=10
$$

(a) Define a Hermitian matrix. Prove that if A is an n-rowed square matrix, then \bar{A} is Hermitian or skew-Hermitian according as A is Hermitian or skew-Hermitian.

$$
1+4=5
$$

(b) Let A and B be two n-rowed invertible matrices. Show that $A B$ is also an n-rowed invertible matrix and $(A B)^{-1}=B^{-1} A^{-1}$.
(c) Reduce the matrix to the normal form and hence determine its rank

$$
\left(\begin{array}{cccc}
6 & 1 & 3 & 8 \\
4 & 2 & 6 & -1 \\
10 & 3 & 9 & 7 \\
16 & 4 & 12 & 15
\end{array}\right)
$$

(d) Show that the system of equations

$$
\begin{aligned}
x+y+z & =6 \\
x+2 y+3 z & =14 \\
x+4 y+7 z & =30
\end{aligned}
$$

is consistent and solve them.

