3 (Sem-1) MAT M 1

2014

MATHEMATICS

(Major)

Paper : 1.1

Full Marks: 80

Time : 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

- 1. Choose the correct answer : 1×10=10
 - (a) Which of the following relations is symmetric but neither reflexive nor transitive?
 - (*i*) $R_1 = \{(a, b) | a^2 + b^2 = 1\}$ on the set of real numbers
 - (ii) $R_2 = \{(a, b) | (a b) \text{ is divisible by 3} \}$ on the set of all integers
 - (iii) $R_3 = \{(a, b) \mid a \text{ is a multiple of } b\}$ on the set of natural numbers
 - (iv) $R_4 = \{(a, b) \mid 1+ab > 0\}$ on the set of real numbers

A15-2000/91

(Turn Over)

1 M MAR 21-MAR (2)

- (b) If a and b are any two elements of a group G, then $(a^{-1}b)^{-1}$ is
 - (i) $a^{-1}b^{-1}$
 - (*ii*) ab^{-1}
 - (*iii*) $b^{-1}a$
 - (iv) $b^{-1}a^{-1}$
- (c) If a is an element of a group G, then which of the following is not true?
 - (i) $o(a) = o(a^{-1})$
- (*ii*) $o(a) < o(a^2)$
 - (iii) $o(a) \ge o(a^2)$

(iv)
$$o(a) = o(x^{-1}ax), x \in G$$

- (d) The value of $\sin(\log i^i)$ is
- (i) 1 (ii) -1
- $\frac{1}{2} = \frac{1}{2} \frac{$

to set (ii) $\frac{1}{\sqrt{2}}$ (O < do + M + i a) = $\sqrt{2}$ (ii) and and less

A15-2000/91

(Continued)

(e) If $(1+x)^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$, then $a_0 - a_2 + a_4 - \cdots$ is

(i)
$$2^{\frac{n}{2}} \sin \frac{n\pi}{4}$$

(ii) $2^{\frac{n}{2}} \cos \frac{n\pi}{4}$
(iii) $2^{\frac{n+1}{2}} \cos \frac{n\pi}{4}$

(*iv*)
$$2^{\frac{n-1}{2}} \sin \frac{n\pi}{4}$$

Which one of the following is true? (i) $\log_e(-\alpha + i\beta) = \frac{1}{2}\log_e(\alpha^2 + \beta^2) + i\tan^{-1}\frac{\alpha}{\beta}$ (ii) $\log_e(\alpha - i\beta) = \frac{1}{2}\log_e(\alpha^2 + \beta^2) - i\tan^{-1}\frac{\alpha}{\beta}$ (iii) $\log_e(\alpha - i\beta) = \frac{1}{2}\log_e(\alpha^2 + \beta^2) - i\tan^{-1}\frac{\beta}{\alpha}$ (iv) $\log_e(\alpha + i\beta) = \frac{1}{2}\log_e(\alpha^2 + \beta^2) - i\tan^{-1}\frac{\beta}{\alpha}$

A15-2000/91

(f)

(Turn Over)

(4)

- (g) If α , β , γ , δ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$, then the value of $\Sigma \alpha^2 \beta$ is
 - (i) pr-4s
 - (*ii*) $p^2 2q$
 - (iii) -pq+3r
 - (iv) $r^2 2as$
- (h) If A is a symmetric matrix, then B'AB, where B is any square matrix of same order, is
 - (i) symmetric
 - (ii) skew-symmetric
 - (iii) Hermitian
 - (iv) skew-Hermitian
- (i) If the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are collinear, then the rank of the matrix

$$\begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix}$$

is

(i) 3
(ii) < 3
(iii) > 3
(iv) ≥ 3
A15-2000/91

(Continued)

- (j) If the number of variables in a system of non-homogeneous equations AX = B is n, then the system possesses a unique solution, if
 - (i) rank A < rank [A B]
 - (ii) rank A > rank [A B]
 - (iii) rank $A = \operatorname{rank} [A B] = n$
 - (iv) None of the above

SECTION-B

- **2.** Give answers to the following questions : 2×5=10
 - (a) With an example, show that we can have maps f and g such that $g \circ f$ is one-one and onto but f need not be onto and g need not be one-one.
 - (b) If A and B are symmetric matrices, then show that AB is symmetric if and only if AB = BA.
 - (c) Prove that every cyclic group is Abelian.

A15-2000/91

(Turn Over)

(6)

- (d) Expand $\sin^3 x$ in ascending powers of x.
- (e) Solve the equation

$$2x^4 - 3x^3 - 3x^2 - 3x - 1 = 0$$

which has one root $1 + \sqrt{2}$.

SECTION-C

3. Answer any four parts :

5×4=20

- (a) Let G be a group. For any a ∈ G, define equivalence class Cl(a) of a. If ~ is an equivalence relation on a non-empty set X, then prove that for any a, b ∈ X
 - (i) $Cl(a) \neq \phi$
 - (ii) either $Cl(a) \cap Cl(b) = \phi$ or Cl(a) = Cl(b)
 - (iii) $X = \bigcup_{a \in X} Cl(a)$ 1+4=5
- (b) Prove that a mapping $f: X \to Y$ is bijective if and only if \exists a mapping $g: Y \to X$ such that $g \circ f$ and $f \circ g$ are identity maps on X and Y respectively.
- (c) Show that the union of two subgroups of a group G is a subgroup if and only if one of them is contained in the other. 5

(Continued)

5

(7)

- (i) If $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$ then prove that $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$ and $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$ (ii) Prove that $(-i)^{(-i)} = e^{(4n-1)\frac{\pi}{2}}$ 3+2=5
- (e) If α , β , γ are the roots of the equation $x^3 + ax + b = 0$, find the equation whose roots are $\alpha^2 + \beta^2$, $\beta^2 + \gamma^2$, $\gamma^2 + \alpha^2$.
- (f) If A is a non-singular matrix, then show that adj adj $A = |A|^{n-2} A$

SECTION-D

- 4. Answer any one part :
 - (a) (i) Suppose for fixed n > 1 and for all a, b in a group G, $(ab)^n = a^n b^n$. Show that $(ab)^{n-1} = b^{n-1}a^{n-1}$.
 - (ii) Prove that an infinite cyclic group has precisely two generators.

A15-2000/91

(d)

(Turn Over)

3

5

5

10

- (iii) Prove that a subgroup H of a group G is a normal subgroup in G if and only if $g^{-1}hg \in H$ for all $h \in H$, $g \in G$. 2+4+4=10
- (b) (i) Show that a subgroup of index 2 in a group G is a normal subgroup of G.
 - (ii) If *H* is a subgroup of a group *G* and $a \in G$, then prove that

 $Ha = H \Leftrightarrow a \in H$

(iii) Let $a, n(n \ge 1)$ be any integers such that g.c.d. (a, n) = 1, then prove that

 $a^{\phi(n)} \equiv 1 \pmod{n}$ 3+2+5=10

5. Answer any one part :

10

- (a) (i) If z is a complex number such that the amplitude of $\frac{z-i}{z+i}$ is $\frac{\pi}{4}$, then show that the point z lies on a circle in the complex plane.
 - (ii) If $x < (\sqrt{2} 1)$, then prove that

$$2\left(x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots\right) = \frac{2x}{1 - x^2} - \frac{1}{3}\left(\frac{2x}{1 - x^2}\right)^3 + \frac{1}{5}\left(\frac{2x}{1 - x^2}\right)^5 - \dots$$

A15-2000/91

(Continued)

- (iii) If $\tan(\alpha + i\beta) = x + iy$, then prove that $x^2 + y^2 + 2x\cot 2\alpha - 1 = 0$ and $x^2 + y^2 - 2y \coth 2\beta + 1 = 0$. 3+3+4=10
- (b) (i) If a and b are complex numbers, then show that

$$|a+\sqrt{a^2-b^2}|+|a-\sqrt{a^2-b^2}|=|a+b|+|a-b|$$

- (ii) Separate into its real part and imaginary part of the expression $(\alpha + i\beta)^{x+iy}$.
- (iii) Prove that

$(1 + \cosh\theta + \sinh\theta)^n$

$$= 2^{n} \cosh^{n} \frac{\theta}{2} \left(\cosh \frac{n\theta}{2} + \sinh \frac{n\theta}{2} \right)$$

3+4+3=10

6. Answer any two parts :

5×2=10

- (a) If α , β , γ are roots of the equation $x^{3} - px^{2} + qx - r = 0$, find the value of $\sum \frac{\beta}{\gamma} + \frac{\gamma}{\beta}$ and $\sum \alpha^{3}\beta^{3}$. 5
- (b) (i) Find the equation whose roots are the roots of the equation $x^3 + 3x^2 - 8x + 1 = 0$, each increased by 1.

A15-2000/91

(Turn Over)

(10)

- (ii) Apply Descartes' rule of signs to find the nature of roots of the equation $x^6 - 3x^2 - 2x - 3 = 0$. 2+3=5
- (c) If the equation $x^3 + px^2 + qx + r = 0$ has a root $\alpha + i\alpha$, where p, q, r and α are reals, then prove that $(p^2 - 2q)(q^2 - 2pr) = r^2$.
- (d) Solve the following equation by Cardon's method $x^3 + 9x^2 + 15x 25 = 0$.
- **7.** Answer any *two* parts : $5 \times 2 = 10$
 - (a) Define a Hermitian matrix. Prove that if A is an *n*-rowed square matrix, then \overline{A} is Hermitian or skew-Hermitian according as A is Hermitian or skew-Hermitian.

1+4=5

5

5

5

- (b) Let A and B be two n-rowed invertible matrices. Show that AB is also an n-rowed invertible matrix and $(AB)^{-1} = B^{-1}A^{-1}$.
- (c) Reduce the matrix to the normal form and hence determine its rank

 $\begin{pmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{pmatrix}$

A15-2000/91

4+1=5 (Continued) (d) Show that the system of equations

x+y+z=6x+2y+3z=14x+4y+7z=30

is consistent and solve them.

* * *

A15-2000/91

3 (Sem-1) MAT M 1

5