3 (Sem-3) CHM M 2

2014

CHEMISTRY

(Major)

Paper : 3.2

(Chemical Bonding)

Full Marks: 60

Time : 21/2 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed : $1 \times 7 = 7$

(a) Arrange the following bonds in the increasing order of bond lengths :

C-H; O-H; N-H

- (b) The molecule with bond angle of 120° out of the following is —.
 Fill in the gap from NH₃, BF₃, CO₂ and CH₄.
- (c) Arrange the diatomics O₂⁺, O₂, O₂⁻ and O₂²⁻ in order of increasing internuclear distance.

A15-1300/355

(Turn Over)

(2)

- (d) Methylbromide reacts much faster than ethylbromide when treated with ethyl alcohol. Explain the underlying cause.
- (e) Which of the following does not possess aromaticity?

- (f) State the number of Na⁺ and Cl⁻ in the unit cell of NaCl, if NaCl forms f.c.c. lattice.
- (g) What is a spinel structure?
- **2.** Answer the following :

2×4=8

- (a) The dipole moment of water is 1.84 D.
 Bond moment of O—H bond is 1.5 D.
 Calculate the ∠H—O—H bond angle in water.
- (b) How is bond order defined for a diatomic molecule in MO theory? Comment on the molecule A_2 of which the bond order is zero.
- (c) What is solvation? Explain by taking an example of ionic solid.
- (d) The density of ice is less than that of water. Explain why.

(Continued)

- **3.** Answer any *three* questions : 5×3=15
 - (a) State and explain the postulates of VSEPR theory. Predict the shape of ClF_3 . 3+2=5
 - (b) What are the three important types of hybrid orbitals that can be formed by an atom with only s- and p-orbitals in its valence shell? Describe the molecular geometry that each of these produces. Which one of the above hybrid orbitals is supposed to form the longest bond?

 $1\frac{1}{2}+3+\frac{1}{2}=5$

- (c) Discuss the structures of PCl₅ and SF₆ highlighting the hybridization of atoms, shape of molecules and bond angles in each. Give reasons why P—Cl bonds in PCl₅ are of two different lengths. 4+1=5
- (d) Explain why-
 - (i) dipole moment of NH₃ is higher than that of NF₃;
 - (ii) bond angle $\angle H$ —O—H in H₂O is higher than bond angle $\angle H$ —S—H in H₂S;
 - (iii) PH_3 is pyramidal in shape whereas PH_4^{\oplus} is tetrahedral. $2+1\frac{1}{2}+1\frac{1}{2}=5$

A15-1300/355

(Turn Over)

4. Answer any three of the following : $5 \times 3 = 15$

- (a) Draw the molecular orbital diagram of carbon monoxide molecule. Mention, how oxygen has higher effective nuclear charge reflected in the MO diagram. State which species out of CO⁺ and CO has stronger bond. Give reasons in support of your answer. 2+1½+1½=5
- (b) State the rules for linear combination of atomic orbitals. The wave function of two hydrogen atoms are given by $\psi(1)$ and $\psi(2)$. Apply the principle of LCAO to generate the wave functions corresponding to molecular orbitals in H₂ molecule. 3+2=5
- (c) Why does B_2H_6 not have the same kind of structure as C_2H_6 ? Draw the structure that B_2H_6 does have and describe the nature of two types of BH bonds therein. 1+2+2=5

(d) Discuss and draw the molecular orbital diagram of BeH₂ molecule. Mention the total bond order of the B—H bonds.

4+1=5

(e) Draw the appropriate electronic formula for resonance forms which contribute to the structures of CO₃⁼ and NO₃[⊖]. Discuss the hybridization of the central atoms and mention the shapes in the two. 3+2=5

(f) Explain the terms 'permitted band', 'forbidden zone' and 'Fermi level' in the light of band theory of bonding in metals. What is an n-type semiconductor? Prepare a diagram of its band structure as a part of your answer.

3+2=5

- 5. Answer any three of the following : 5×3=15
 - (a) (i) Write any two different types of unit cells on the basis of cell parameters. Mention the cell parameters.
 - (ii) How many Bravais lattices are known?
 - (iii) Define Miller indices. A plane in an ionic crystal is indicated as (1 2 1).
 What are the Miller indices for the plane? 2+1+(1+1)=5
 - (b) Explain (i) radius ratio and (ii) coordination number in an ionic crystal. In an ionic crystal composed of A^{\oplus} and B^{\ominus} ions, all the B^{\ominus} ions touch

A15-1300/355

(Turn Over)

(Continued)

each other as well as the A^{\oplus} ions. Find a probable radius ratio and predict its structure. 2+3=5

(c)

What is Born-Haber cycle? Construct Born-Haber cycle for formation of LiCl (s). Explain each step.

Using Born-Haber cycle, calculate the missing parameter of LiCl (s) from the following data : 1+2+2=5

 $\Delta H (\text{kJ mol}^{-1})$

Sublimation of Li (s)	160.7
Ionisation of Li (g)	520.0
Dissociation of Cl ₂ (g)	242.0
Electron gain by Cl (g)	-365.0
Lattice energy of LiCl (s)	-838.4

(d) Arrange the following molecules in increasing order with respect to melting point within the groups :

Group (i) : NaCl, MgCl₂, AlCl₃ Group (ii) : BeCl₂, CaCl₂, SrCl₂, BaCl₂

Group (iii) : CaI_2 , $CaBr_2$, CaF_2 Support your answer on the basis of Fajans' rules. 2+3=5

3 (Sem-3) CHM M 2

A15-1300/355